VPDES Permit VA0001589 Steel Dynamics, Roanoke Bar Division Reissuance 2011

ATTACHMENT A

- 1. Flow Frequency Memo of March 25, 2010
- 2. Industrial process water flow diagram of from permit application
- 3. Waste water treatment flow diagram from the permit application
- 4. Portion of Roanoke USGS quadrangles (109 C)
- 5. 2008 Impaired Waters Fact Sheets L04R bacteria, PCB and benthic
- 6. Excerpt for Bacterial TMDL for Roanoke River Watershed, reference to Roanoke Electric Steel without a bacterial allocation for the discharge
- 7. Excerpt for PCB TMDL for Roanoke River Watershed, reference to Roanoke Electric Steel with allocation for the process wastewater and stormwater discharges
- 8. Excerpt for Benthic TMDL for Roanoke River Watershed, reference to Roanoke Electric Steel with allocations for the process wastewater and stormwater discharges
- 9. Site visit report of July 8, 2009 visit to plant
- 10. STORET monitoring data for station 4APEE01.04 pH, hardness and temperature

VPDES Permit VA0001589 Steel Dynamics, Roanoke Bar Division Reissuance 2011

ATTACHMENT A

MEMORANDUM DEPARTMENT OF ENVIRONMENTAL OUALITY - WATER DIVISION

Water Permitting, Blue Ridge Regional Office - Roanoke 3019 Peters Creek Road, Roanoke, VA 24019-2738

SUBJECT: Flow Frequency Determination, Steel Dynamics (dba RES Roanoke Bar Division) - VA0001589

TO: Permit reissuance file

FROM: Susan K. Edwards, Environmental Engineer Senior, Water Permitting - BRRO Roanoke

DATE: March 25, 2010

This memo supercedes the November 2004 memo concerning the subject VPDES permit.

The Steel Dynamic's treated industrial wastewater discharges to Peters Creek just upstream of the extremely large culvert under a large area of railroad tracks and the confluence of Peters Creek with the Roanoke River on the western side of Roanoke, VA. Stream flow frequencies are required at this site for the purpose of calculating effluent limitations for the VPDES permit.

The VDEQ and USGS have operated a continuous record gage on Tinker Creek (#02055100) since 1956. The gage is located 1.3 miles northwest of Daleville, VA. The flows at the discharge point were calculated by drainage area comparison and do not address any withdrawals, discharges, or springs that may lie upstream. The flow frequencies for the gage and the discharge point are presented below. There are no site specific flow values.

Tinker Creek near Daleville, VA (#02055100): (statistical period 1956 - 2003)

Drainage Area = 11.7 mi ²	30Q5 = 1.6 cfs
Harmonic Mean = 5.0 cfs	30Q10 = 1.2 cfs
High Flow $30Q10 = 3.2$ cfs	7Q10 = 1.0 cfs
High Flow $7Q10 = 2.6$ cfs	1Q10 = 0.96 cfs
High Flow $1Q10 = 2.3$ cfs	1Q30 = 0.65 cfs

Peters Creek at discharge point:

Drainage Area = 8.95 mi^2	30Q5 = 1.22 cfs / 0.79 MGD
Harmonic Mean = 3.82 cfs / 2.47 MGD	30Q10 = 1.07 cfs / 0.69 MGD
High Flow $30Q10 = 2.45 \text{ cfs} / 1.58 \text{ MGD}$	7Q10 = 0.76 cfs / 0.49 MGD
High Flow $7Q10 = 1.99 \text{ cfs} / 1.29 \text{ MGD}$	1Q10 = 0.73 cfs / 0.47 MGD
High Flow $1Q10 = 1.76 \text{ cfs} / 1.14 \text{ MGD}$	1Q30 = 0.50 cfs / 0.32 MGD

The high flow months are January through May.

Steel Dynamics, Roanoke Bar Division Process Water Flow Diagram

2008 Impaired Waters

Categories 4 and 5 by Basin & Stream Name

Roanoke and Yadkin River Basins

Cause Group Code: L04R-06-BAC

Peters Creek

Location: Peters Creek mainstem from its headwaters (Salem Quad) extending downstream to the Peters Creek confluence on the

Roanoke River (Roanoke Quad).

City / County: Roanoke City

Roanoke Co.

Use(s): Recreation

Cause(s) /

VA Category: Escherichia coli/ 5A

Escherichia coli (E.coli) replaces fecal coliform bacteria as the indicator as per Water Quality Standards [9 VAC 25-260-170. Bacteria; other waters]. The 2002 303(d) Listed 7.14 mile Peters Creek Recreational impairment remains.

The Roanoke River Bacteria TMDL Study is complete and US EPA approved on 8/02/2006 [FED ID 24538] with SWCB approval on 9/07/2006. 1996 & 2002 fecal coliform (FC) observations are the basis for the original bacteria impaired listing. The 2008 total bacteria impaired length is 29.51 miles on the Roanoke and 350.06 acres in Smith Mountain Lake. The approved TMDL did not specifically address the Peters Creek bacteria Impairment.

4APEE001.04- (Shenandoah Avenue Bridge) Data within the 2008 data window find E.coli exceeds the 235 cfu/100 ml instantaneous criterion in 11 of 32 observations ranging from 250 cfu/100 ml to >2000. The E.coli geometric mean of 126 cfu/100 ml is exceeded in three of five calculations. The 2006 Integrated Report (IR) finds the same range of exceedence and geometric mean excursions from 10 of 20 samples. The original 2002 bacteria 303(d) Listing is based on a Special Study (SS 975101) conducted in 1997 where fecal coliform data resulted in geometric mean exceedences derived from the special study data.

Peleis Cieek	Pe	ters	Creek	
--------------	----	------	-------	--

Waterfowl

Recreation

Estuary (Sq. Miles)

Reservoir (Acres)

River (Miles)

Escherichia coli - Total Impaired Size by Water Type:

7.14

Sources:

Discharges from Municipal Separate Storm Sewer Systems (MS4)

Systems (MS4)
Wildlife Other than

Municipal (Urbanized High Density Area)

Unspecified Domestic Waste

Wet Weather Discharges (Non-Point Source)

*Narrative descriptions, Location and City/County describes the entire extent of the Impairment. Sizes may not represent the total overall size of the impairment in terms of stream name only.

Appendix A - List of Impaired (Category 5) Waters in 2008*

Roanoke and Yadkin River Basins

Cause Group Code L04R-01-BEN

Roanoke River

Location: Roanoke River mainstem from the Mason Creek mouth downstream to the mouth of Back Creek.

Note: Impounded waters of Niagara Dam are not included with this impairment.

City / County: Bedford Co.

Roanoke City

Roanoke Co.

Salem City

Use(s): Aquatic Life

Cause(s) /

VA Category: Benthic-Macroinvertebrate Bioassessments / 4A

Benthic-Macroinvertebrate Bioassessments / 5A

The Roanoke River General Standard - Benthic (Sediment) TMDL Study is complete and US EPA approved 5/10/2006 IFed. ID - NA]. SWCB approved 9/07/2006. Formerly coded VAW-L04R-01. The benthic impairment is extended downstream with the 2008 Integrated Report (IR) for 3.14 miles from Niagara Dam downstream to the mouth of Back Creek. This portion of the impairment is Category 5A as the TMDL Study did not address these waters. The extension results in a total General Standard (Benthic) impairment of 14.45 miles. The impairment does not include the impounded waters of Niagara Dam.

4AROA212.17- (Rt. 11 Bridge - below Eaton, Inc.) Bio 'IM' There are five Virginia Stream Condition Index (VSCI) surveys (2001-2006) conducted at this site with average seasonal scores of spring 59.6 and fall 57.1 the average score is 58.1. Fewer taxa and fewer sensitive taxa compared to the reference site. The modified family biotic index consistently shows a slight-tomoderate impact from organic pollution. The benthic community appears to be more sensitive to drought conditions.

4AROA206.27- (Wasena Park) Bio 'IM' Four VSCI surveys (2001-2006) with an average score of 57.4. Non-impaired samples showed an increase in diversity and a decrease in pollution tolerant midge larvae; family Chironomidae. Impaired samples showed a decrease in diversity and in increase in pollution tolerant midge larvae; family Chironomidae.

4AROA202.20- (14th Street Bridge - above STP) Bio 'IM' Five VSCI surveys (2001-2005) with an average score of 51.4 finding impairment. Historically sedimentation has decreased the amount of substrate available for macroinvertebrate colonization. The benthic community declined from fall 2001 to fall 2003 and improved during spring and fall 2004. The fall 2004 survey resulted in a non-impaired score of 65.08. This is the highest VSCI score found at this station. This was the only Roanoke River station sampled in fall 2004 and it was used as the benthic macroinvertebrate sample location for a nearby Probabilistic monitoring site (4AROA202.32). The lower limit for a reference site is 60.0.

4AROA198.08- (Explore Park near the Shenandoah Pavilion) Bio 'IM' Two VSCI surveys 2005 and 2006 both fall scores are 56,3 and 55,0. Both surveys had benthic communities dominated by net-spinning caddisfly larvae (Hydropsychidae). Thése organisms typically dominate streams that have high amounts of organic matter. Both surveys had low numbers of pollution sensitive taxa such as mayflies and stoneflies. In stream habitat, riparian zone vegetation, and bank stability are all optimal providing conditions favorable for a healthy benthic community. However, algae (filamentous and periphyton) growth is thick on stream substrates indicating that nutrients may be excessive.

Roanoke River

Aquatic Life

Discharges

Estuary (Sq. Miles) Reservoir (Acres)

River (Miles)

Benthic-Macroinvertebrate Bioassessments - Total Impaired Size by Water Type:

14.45

Sources:

Discharges from Municipal Separate Storm Sewer

Systems (MS4)

Municipal (Urbanized High Density Area)

Sediment Resuspension (Clean Sediment)

Drought-related Impacts

Municipal Point Source

Sediment Resuspension

(Contaminated Sediment)

Industrial Point Source

Discharge

Post-development Erosion and Sedimentation

Wet Weather Discharges (Point Source and Combination of Stormwater, SSO or CSO)

Industrial/Commercial Site Stormwater Discharge

(Permitted)

Residential Districts

Appendix A - List of Impaired (Category 5) Waters in 2008*

Roanoke and Yadkin River Basins

Cause Group Code L12L-01-PCB

Roanoke River, Blackwater River, Smith Mountain Lake, Tinker Creek and Peters Creek.

Location: Roanoke River from the confluence of the North and South Forks downstream to Smith Mtn. Dam. Blackwater River from the Rt. 122 crossing downstream to its confluence with the Roanoke River in Smith Mtn. Lake. Peters Creek from the Rt. 460 Bridge downstream to its confluence on the Roanoke River. Tinker Creek from the mouth of Deer Branch downstream to the Tinker Creek confluence on the Roanoke River.

City / County: Bedford Co.

Botetourt Co.

Franklin Co.

Montagmery Co.

Pittsylvania Co.

Roanoke City

Roanoke Co.

Salem City

Use(s): Fish Consumption

Cause(s) /

VA Category: PCB in Fish Tissue / 5A

The waters of the Roanoke River (31.74 miles), Blackwater River (11.29 miles), Peters Creek (2.52 miles), Tinker Creek (5.33 miles) and Smith Mountain Lake (19,789.92 acres) are under a Virginia Department of Health (VDH) Fish Consumption Advisory for Polychlorinated Biphenols (PCB) issued 7/27/05. The VDH Advisory is based on fish tissue found to contain greater than 50 ppb of PCBs. The previous advisory (issued 10/20/03) recommended that no more than two eight-ounce meals per month of flathead catfish (less than 32 inches in size), striped bass, gizzard shad, redhorse sucker, largemouth bass and carp should be consumed. Per the previous advisory, flathead catfish (greater than 32 inches in size) should not be eaten. The advisory has been updated to also recommend that no more than two eight-ounce meals per month of channel catfish should be consumed.

There are 10 fish tissue collection sites within the 2008 data window reporting exceedences of the DEQ WQS 54 ppb fish tissue value (TV). These data are reviewed by the VDH in making an advisory determination. A complete listing of collection sites and associated fish tissue data are available at http://www.deq.virginia.gov/fishtissue/fishtissue.html. A more detailed presentation of the data can also be found using an interactive mapping application at http://gisweb.deq.state.va.us/. The VDH Advisory information is also available via the web at http://www.ydh.virginia.gov/Epidemiology/PublicHealthToxicology/Advisories/.

Roanoke River, Blackwater River, Smith Mountain Lake, Tinker Creek and Peters Creek.

Estuary (Sq. Miles) Reservoir (Acres)

River (Miles)

PCB in Fish Tissue - Total Impaired Size by Water Type:

19,789.92

50.88

Sources:

Source Unknown

Fish Consumption

Bacteria TMDLs for Wilson Creek, Ore Branch and Roanoke River Watersheds, Virginia

Submitted by

Virginia Department of Environmental Quality

Prepared by

and

February 2006

Bacteria TMDLs for Wilson Creek, Ore Branch and the Roanoke River Watersheds

Table 4-4: Permitted Dischargers in the Wilson Creek, Ore Branch, and Roanoke River Watersheds

VA0001333 Koppers Inc I 0.6 Roanoke River N Motiva Enterprises VA0001431 LLC - Roanoke I 5.32 Back Creek, UT N Peopole City Copying	I/A Active I/A Active I/A Active
VA0001431 LLC - Roanoke I 5.32 Back Creek, UT N People of the Corning	I/A
VA0001431 LLC - Roanoke I 5.32 Back Creek, UT N	I/A Active
Roanoke City - Carvins	
	J/A Active
VA0001589 Roanoke Electric Steel I 0.039 Peters Creek N	I/A Active
VA0001597 Crossing Run, UT	I/A Active
Shawsville Town - Sewage Treatment VA0024031 Plant Shawsville Town - M 0.2 South Fork Roanoke River	5.3 Active
Western Virginia Water M 62 Roanoke River perm VA0025020 Authority lim	low nitted nits Active
Blacksburg Country Club Sewage VA0027481 Treatment Plant M 0.035 North Fork Roanoke River	/A Active
VA0028711 Suncrest Heights U1	/A History
Montgomery County PSA - Elliston- VA0062219 Lafayette WWTP M 0.25 South Fork Roanoke River	/A Açtive
VA0077895 Roanoke Moose Lodge M 0.0047 Mason Creek N	/A Active
VA0086541 Roanoke Terminal UT	/A Active
American Electric Power - Niagara Hydro VA0087092 Plant O.143 Roanoke River N/	/A Active
VA0088358 Fred Whitaker Co I 0.151 Roanoke River N/	/A Active
VA0089702 Safety Kleen Systems I NA NA NA NA	/A History
VA0089991 Federal Mogul Corp - I 0.065 Wilson Creek, UT	/A Active
VA0091065 Crystal Springs WTP I 0.092 Roanoke River N/	/A Active

mgd: Million Gallons per Day

N/A: Data not available or not applicable I: Industrial; M: Municipal

FINAL Roanoke River PCB TMDL Development (Virginia)

December 2009

Prepared for: United States Environmental Protection Agency, Region 3
Prepared by: Tetra Tech, Inc.; 10306 Eaton Place, Suite 340, Fairfax, VA 22030
[Approved by EPA on April 9, 2010]

Excerpts regarding Peters Creek Allocations

6. TMDL Allocation Analysis

In TMDL development, allowable loadings from pollutant sources are established and when summed, are equivalent to the TMDL which forms the basis for the requirement of water quality-based controls. TMDLs can be expressed on a mass loading basis (e.g., grams of pollutant per day) or as a concentration in accordance with 40 CFR 130.2(I).

Tables 6-1 and 6-2 present a summary of the WLAs, LAs, and TMDLs, developed for streams in the upper and lower watershed sections on an average annual and daily basis, respectively. As tPCBs bioaccumulate in fish tissue over time, it is more appropriate to express the loads on an annual basis. WLAs and LAs were assigned on the basis of the assimilative capacity of the Roanoke River watershed. Source load allocations for this TMDL scenario are presented in the following sections. Average daily loads were calculated as the average annual load divided by 365.

Table 6-1, Average annual tPCBs TMDLs for Roanoke River watershed streams

Stream	2008 303(d) list ID	Baseline (mg/yr)	WLA (mg/yr)	LA (mg/yr)	MOS (mgiyr)	TMDL (mg/yr)	% Reduction	
Upper Roanoke River								
Peters Creek	L12L-01- PCB	1,742.6	65.4	31.2	5.1	101.7	94.2	

Table 6-2. Average daily tPCBs TMDLs for Roanoke River watershed streams.

Stream	2009 303(d) list ID	Baseline (mg/d) Upper Roar	WLA (mg/d)		MOS (mg/d)	TMDL (mg/kl)	% Reduction
Peters Creek	L12L-01- PCB	4.774	0.179	0.086	0,014	0.279	94.2

6.1. Wasteload Allocations

Federal regulations (40 CFR 130.7) require TMDLs to include individual WLAs for each point source. WLAs contain the allowable loadings from existing and future point sources. The WLA portion of the TMDL includes the traditional point source discharges, individually permitted stormwater dischargers, and MS4s. WLAs for point source categories in Roanoke River watershed streams grouped by watershed section are presented in Table 6-3. WLA's for individual point sources, permitted stormwater dischargers, and MS4s are presented in Tables 6-4 through 6-6. Note that the loads calculated for all WLA sources are estimates. Loads assigned to traditional point sources were derived from one or two samples of effluent tPCBs concentrations and loads attributed to stormwater dischargers and MS4s are based on estimates of upland soil tPCBs concentrations (see Appendix G). In all cases additional PCB monitoring will have to be performed.

For this TMDL, the VADEQ agreed to apply a consistent approach to all traditional point sources for determining WLAs. The allocations are derived as facility design flow multiplied by the applicable watershed section water column target. In some cases, because current flows are less than facility design flows, this approach results in a TMDL WLA that is larger than the estimated baseline load, which is indicated by negative reduction values in Table 6-4.

Table 6-3. Average annual tPCBs WLAs for Roanoke River watershed streams

I MDIC V-W. I		oint source		Stormwate				1S4s	
Stream	Baseline (mg/yr)	WLA (mg/yr)	% Reduction ^b	Baseline (mg/yr)	WLA (mg/yr)	% Reduction ^b	Baseline (mg/yr)	WLA (mg/yr)	% Reduction ^b
Upper Roanoke River									
Pelers Creek®	90.7	50.8	44.0	1.4	0.0	99.1	1,542.2	14.6	99.1

Table 6-4. Point source tPCBs WLAs

Stream	NPDES ID	Facility	Pipe	Baseline (mg/yr)	WLA (mg/yr)	% Reduction ^a		
Upper Roanoke River								
Pelers Creek	VA0001589	Steel Dynamics	5	90.7	50.8	44.0		
Peters Creek Tota	al ^b			90.7	50.8	44.0		

Table 6-5. Permitted stormwater dischargers tPCBs WLAs

Stream	NPDES ID	Stormwater discharger	Baseline (mg/yr)	WLA (mg/yr)	% Reduction ^c
Peters Creek	VA0001589	Steel Dynamics	1.44	0.01	99,050
Peters Creek Total ^d		,	1.44	0.01	99.050

Table 6-6, MS4 tPCBsWLAs

Stream	M\$4	Baseline MS4 (mg/yr)		% Reduction*	
	Upper Roanoke	River			
Pelers Creek	City of Salem	18.6	0.2	99.050	
Peters Creek	Roancke City	1,033.7	9.8	99.054	
Pelers Creek	Roanoke County	490.0	4.7	99.050	
Peters Creek Total ^b		1,542.2	14.6	99.053	

6.2. Load Allocations

Generally, the LA is the amount of a pollutant contributed to the waterbody by nonpoint sources. For the purposes of this TMDL, nonpoint sources have been grouped into current and legacy sources. Current nonpoint sources include contributions of PCBs to the Roanoke River watershed from runoff of contaminated sites not within the spatial extent of MS4s or areas permitted for stormwater discharges. Contaminated sites have been categorized as known contaminated sites and urban background including unidentified contaminated sites. Legacy nonpoint sources include atmospheric deposition to surface waters and historically contaminated streambed sediment in the river.

Loadings from contaminated streambed sediments have been excluded from the TMDLs.

LAs for nonpoint source categories in Roanoke River watershed streams grouped by watershed section are presented in Table 6-7. Note that the loads calculated for all LA sources are estimates. Loads assigned to contaminated sites are based on estimates of upland soil PCB concentrations, while loads attributed to atmospheric deposition are based on literature sources (see Appendix G). In both cases additional PCB monitoring will have to be performed.

Table 6-7. Average annual tPCBs LAs for Roanoke River watershed streams

	Known	contan sites	ninated	backgrou	Urban md/unici ninated :		Atmos	oheric depo	sition
Stream	Baseline (mg/yr)	LA (mg/yr)	% Reduction ^a	Baseline (mg½r)	LA (mgʻyr)	% Reduction ³	Baseline (mg/yr)	LA (mgỳr)	% Reduction³
Upper Roanoke River									
Pelers Creek [®]	0.0	0.0	0.0	76.1	0.7	99.1	32.1	30.5	5.0

Benthic TMDL Development for the Roanoke River, Virginia

Submitted to

Virginia Department of Environmental Quality

Prepared by

March 2006

7.1.2 Wasteload Allocation

The wasteload allocated to point sources in the watershed was based on the permitted discharge loading rate for total suspended solids for each facility as shown in Table 7-1. Because the facilities typically contribute only non-settleable solids, and their overall contribution to the total annual watershed sediment load is small, no reductions are required for these sources.

The Cities of Roanoke and Salem, as well as portions of Roanoke, Botetourt, and Montgomery Counties, and three facilities located within the Roanoke City metropolitan area, are covered by MS4 permits which are included in the wasteload allocations. As discussed in Section 6.0, land-based loads were allocated to the MS4 based on an area weighted method. The MS4 wasteload allocations by land use type for all the permitees are presented in Table 7-2. Table 7-3 shows the individual sediment allocation for each MS4 urban area. As indicated in Table 7-2, a 69.5 percent reduction in urban, agricultural, and transitional land-based sources and instream erosion allocated to the MS4s is required to achieve the TMDL endpoint. Wasteload allocations were based on an equal percent reduction from controllable sources. Loads from forested lands are considered to be representative of the natural condition and therefore were not subject to reductions.

Wasteload allocations for facilities in the watershed holding general stormwater permits are presented in Appendix D. The majority of the facilities holding general stormwater permits is located in areas covered by MS4 permits, and is thus included in the MS4 wasteload allocation.

Appendix D provides a finer breakdown of the wasteload allocation by providing specific wasteload allocations for each facility holding a general stormwater permit.

TMDL Allocation 7-2

Table 7-1: Point Source Wasteload Allocations for Roanoke River

Facility Name	Permit Number	Annual Sediment Loads (tons/yr)	Allocated Loads (tons/yr)	Percent Reduction
Western Virginia Water Authority	VA0025020	472.2	472.2	0
Roanoke Electric Steel Corporation	VA0001589	92.9	92.9	0
Shawville Town STP	VA0024031	9.1	9.1	0
Carvin Cove Water Filtration Plant	VA0001473	17.6	17.6	0
Crystal Springs WTP	VA0091065	8.8	8.8	0
Norfolk Southern Railway Company - Shaffers Crossings	VA0001597	1.62	1.62	0
Ellison Lafayette WWTP	VA0062219	11.2	11.2	0
Blacksburg Country Club STP	VA0027481	1.57	1.57	0
Roanoke Moose Lodge	VA0077895	0.21	0.21	0
	Total	Allocated Load	615.3	0

Table 7-2: MS4 Wasteload Allocation by Land Use Type

Source	Land Use Type	Sedin	Average Annual Sediment Load (tons/yr)				
		Existing	Allocated				
	Open Water	0.0	0.0	0			
	Low Intensity Residential	125.0	38.1	69.5			
	High Intensity Residential	72.5	22.1	69.5			
	Commercial/Industrial	3239.3	988.9	69.5			
	Quarries/Strip Mines	401.4	122.6	69.5			
	Transitional	321.7	98.1	69.5			
Point Sources -	Deciduous Forest	78.6	78.6	0			
MS4s	Evergreen Forest	6.1	6.1	0			
1125 15	Mixed Forest	29.3	29.3	0			
	Pasture/Hay	527.0	160.7	69.5			
	Row Crop	203.7	62.3	69.5			
	Urban/Recreational Grasses	31.8	9.7	69.5			
	Woody Wetlands	0.0	0.0	0			
	Emergent Wetlands	0.0	0.0	0			
	Instream Erosion	9686.8	2956.4	69.5			
Total		14,723	4,573	69.5			

TMDL Allocation 7-3

APPENDIX D: General Permit & Individual Permit Stormwater TMDL Allocations

The TSS allocation for each permitted facility was calculated using a DEQ assigned TSS concentration and the corresponding runoff amount generated on the site based on the facility area or the facility discharge. The TSS allocated load for each permit type was calculated as follows:

- For individual permitted facilities, the allocated load was calculated based on a TSS concentration of 100 mg/L, the facility area, and 72.54 cm of runoff per year. The annual average runoff of 72.54 cm corresponds to an annual average rainfall of 40.8 inches (103.63 cm) and an industrial land cover with 70 percent imperviousness.
- For general stormwater permits issued to industrial facilities, the allocated load was calculated based on a TSS concentration of 100 mg/L, the facility area, and 72.54 cm of runoff per year.
- For general permits issued to domestic sewage facilities, the allocated load was calculated based on a TSS concentration of 30 mg/L and a flow value of 1,000 gallons per day.
- For general permits issued to mines, the allocated load was calculated based on a TSS concentration of 30 mg/L, the facility area, and 45.9 cm of runoff per year.
- For general permits issued to concrete facilities, the allocated load was calculated based on a TSS concentration of 30 mg/L, the facility area, and 72.54 cm of runoff per year.
- For general stormwater permits issued to carwashes, the allocated load was calculated based on a TSS concentration of 60 mg/L, the facility area, and 72.54 cm of runoff per year.
- For general stormwater permits issued to construction sites, the total allocated load was calculated based on a per acre loading unit of 10.97 metric tons of sediment per hectare, the disturbed construction area, and a sediment delivery ratio of 0.136. Table D-7 depicts the combined sediment load from all construction sites based on an average annual disturbed area of 467 acres. The average annual acreage of 467 acres was derived using information from the VADEQ Comprehensive Environmental Database System (CEDS) database for the period of 2002 to 2004.

Appendix D D-1

Table D-1: Stormwater TMDL Allocations for Individual Permitted Facilities

Permit Number	Facility	TSS Stormwater Allocation (tons/yr)
VA0001252	Associated Asphalt Inc.	2.78
VA0001333	Koppers Inc.	18.24
VA0001589	Roanoke Electric Steel Corp.	56.55
VA0001511	Norfolk Southern Railway Co - East End Shops	35.70
VA0001597	Norfolk Southern Railway Co Shaffers Crossing	28.83
VA0025020	Western Virginia Water Authority	34.17
VA0088358	Fred Whitaker Co.	0.97
VA0089991	Federal Mogul Corp.	12.30

Table D-2: TMDL Allocations for General Stormwater Permits Issued to Industrial Facilities

Permit Number	Facility	Receiving Waterbody	MS4 Area	TSS Allocation (tons/yr)
VAR050027	Auto Salvage & Sales, Inc.	Tinker Creek	Roanoke City	0.53
VAR050134	Greater Roanoke Transit Company	Lick Run	Roanoke City	0.81
VAR050135	Virginia Scrap Iron & Metal Company Inc	Roanoke River	Roanoke City	1.66
VAR050143	Virginia Scrap Iron & Metal Incorporated	Roanoke River	Roanoke City	1.66
VAR050144	North 11 Asphalt Plant - Roanoke	Carvins Creek	Roanoke City	27.43
VAR050145	Holland-Richards Vault Service	Mason Creek	Roanoke City	0.25
VAR050178	BFI Waste Systems LLC - Roanoke	Roanoke River	Roanoke City	0.63
VAR050207	1915 Plantation Rd LLC	Lick Run	Roanoke City	0.63
VAR050208	Walker Machine & Foundry Corp	Roanoke River	Roanoke City	2.40
VAR050272	Roanoke Regional Airport	Deer Creek	Roanoke City	179.22
VAR050273	Ralph Smith Inc Steel Fabrication	Roanoke River UT	Roanoke City	. 0.67
VAR050274	USPS Roanoke Vehicle Maintenance Service	Roanoke River	Roanoke City	3.56
VAR050275	Old Dominion Auto Salvage	Tinker Creek	Roanoke City	3.46
VAR050436	Norfolk Southern Corp - Roadway Material Yard	Roanoke River	Roanoke City	0.49
VAR050437	Estes Express Lines Incorporated	Roanoke River, UT	Roanoke City	2.33
VAR050460	Yellow Freight System Inc	Tinker Creek	Roanoke City	1.62
VAR050496	Federal Express Corp - ROAA Station	Lick Run	Roanoke City	1.69
VAR050516	Mennel Milling Company	Roanoke River	Roanoke City	0.32
VAR050519	FedEx Freight East, Inc.	UT to Lick Run	Roanoke City	1.73
VAR050520	O'Neal Steel Inc	Tinker Creek	Roanoke City	6.46
VAR050522	Progress Rail Services Corp - Roanoke	Roanoke River	Roanoke City	3.95

Appendix D D-2

M E M O R A N D U M VIRGINIA DEPARTMENT OF ENVIRONMENTAL QUALITY BLUE RIDGE REGIONAL OFFICE - Roanoke WATER DIVISION

3019 Peters Creek Road

Roanoke, Virginia 24019-2738

Subject: Site visit Steel Dynamics dba Roanoke Electric Steel (SDI) in conjunction with VPDES permit

reissuance VA0001589 - stormwater focus

From: Susan K. Edwards, Environmental Engineer Sr.

To: Fact Sheet

Date: July 10, 2009

GENERAL INFORMATION

An unannounced site visit, with BRRO-R water inspector Gerald Duff, was made on July 8, 2009. SDI is located at the end of Westside Boulevard in the city of Roanoke. Telephone number (540)342-1831. Cary Lester is the Director of Environmental Affairs for the plant and Jeff Kiser is the Environmental Supervisor. The discharge VPDES permit is an industrial major.

The industrial discharge results from the refining of scrap metal into steel billets to produce hot rolled bars, bar shapes and structural steel. The site also discharges storm water associated with industrial activity. This site visit specifically focused on storm water issues at the site.

Before walking the property we sat down with Mr. Lester and Mr. Kiser to discuss stormwater at the site and the major changes to the stormwater discharges that are under construction. The stormwater construction activities are covered under an erosion & sediment control plan with the city of Roanoke. However, application for permitting of the additional stormwater outfalls associated needs to be submitted soon to be incorporated into the next reissuance or as a revoke & reissuance of the permit. It was emphasized that the incorporation of the new outfalls need to be ready when the discharges convert from coverage under E&SC Construction activity to stormwater associated with industrial activity under the VPDES Permit. Gerald reviewed and discussed the SWPPP with Mr. Lester and Mr. Kiser. They discussed some follow-up items needed from Steel Dynamics and what can be expected in follow-up from the site visit. Discussion included pH concerns in stormwater and the recent submittal of a Registration Statement for coverage under the VPDES General Permit for Discharge of Stormwater Associated with Industrial Activity for SDI slag processing by Phoenix on adjacent property.

Since the last reissuance significant changes have taken place with the industrial plant and the plant property. Within the plant building an industrial spill plan that includes providing a system of central trench drains that drain to the building floor sump to prevent release of any spills from the mill. A site-wide industrial stormwater contact source is from stormwater contact with fugitive particulates from the mill air-pollution control system. The plant's SWPPP does utilize street-sweeping of paved areas, but the wholesale replacement of the air-pollution collection and control system is expected to greatly reduce this source of potential stormwater contact with industrial material. In comparison to previous site visit it is obvious SDI has reduced the exposure risks of materials to stormwater in the volume of materials stored outside. Mr. Lester emphasized that SDI plans to continue this effort.

However, even with housekeeping practices, replacing the air pollution control system and reducing the amount of material stored where it may impact stormwater quality it is believed the site has an underlying legacy stormwater problem. That is the use of slag on the property. Slag is believed to have been used historically as the fill material all over the property and it is expected that the contact of stormwater with this material greatly impacts the quality of stormwater with impact on pH, solids and metals. This may also be a contributing factor in the sensitivity of Ceriodaphnia to outfall 001 stormwater.

Stormwater is discharged from existing outfalls 001, 002 and 003. Stormwater from the drainage area designated as outfall 004 actually drains to Peters Creek by sheet flow with no distinct discharge point. A drainage area map that is part of the stormwater pollution prevention plan indicates areas where materials are stored. The nature of the industrial activity includes considerable outside materials storage. Most drainage areas include significant activity that would be impractical to place under cover. During the current permit term efforts to improve the quality of storm water have focused on "house-keeping" measures. Outfall 001 continues to be a significant concern over the quality of the effluent because of the amount of industrial activity and material storage associated with that drainage area.

New outfalls labeled as 006, 007 and 008 for the new area of property development were visited. There is significant run-on from the Phoenix slag processing site. Bank rill erosion is evident across vast areas of the graded cut areas down to the operation yard of the expanded site. The run-on from Phoenix appears to contribute to the difficulties in establishment of cover on the banks along the boundary between the properties. It is expected that vegetative cover on the banks will be established and erosion will be under control before the E&SC bond for the construction activity will be released by the City. Because the drainage area associated with outfall 008 includes a large detention basin this outfall is not expected to discharge on a routine basis if at all.

New monitoring associated with stormwater permit coverage will demonstrate if the new air pollution control baghouse will result in improved stormwater quality in conjunction with on-going stormwater pollution prevention house-keeping. With so much slag across the property it may be difficult to significantly improve stormwater quality without installation of physical stormwater quality measures. Perhaps some vegetative buffers acting as stormwater filters may be sited to benefit the quality of discharge from some outfalls. Ultimately the facility may need to incorporate stormwater quality filter materials in the collection system.

STORET data summary

Station 4APEE001.04

Peters Creek at Shendoah Avenue bridge

				Total	140
Collection Date		Temp.	<u> Hq</u>	<u>Hardness</u>	
		(C)	(SU)	(mg/L CaCO3)	
26-Jul-1994		23.1	8.2	182	
25-Oct-1994	•	17.5	8.6	180	
17-Jan-1995	w	10.9	7.8	98	
22-Jun-1995		23.1	8.06	NULL	
10-Oct-1995		18.6	8.1	201	
22-Jan-1996	w	2.5	8.1	127	
8-Apr-1996	w	10.3	8.9	136	
18-Jul-1996		24	8.2	164	
15-Oct-1996		17	8.5	191	
13-Jan-1997	w	5	8.2	173	
7-Apr-1997	w	19.6	8.6	186	•
31-Jul-1997		23	8.3	202	
15-Oct-1997		17.6	8.3	184	
29-Jan-1998	w	8.6	7.4	82	
30-Mar-1998	w	20.7	8.9	144	
13-Jul-1998		23.5	8.4	158	•
22-Oct-1998		12.3	8.1	192	
25-Jan-1999	w	10.3	8.0	148	
12-Apr-1999	w	13.8	7.8	120	
10-Aug-1999		25.2	8.7	180	
7-Oct-1999		16.2	8.3	186	
20-Dec-1999		10.3	8.4	141	4
10-Feb-2000	w .	8	8.4	164	
6-Apr-2000	w	19	8.2	151	
20-Jun-2000		23.4	8.6	159	
18-Jul-2000		21.7	8.3	166	
19-Sep-2000		18.3	8.5	67	
9-Nov-2000		13.2	8.8	154	
18-Jan-2001	w	6.8	8.3	194	
19-Mar-2001	w	12.3	8.5	157	
1-May-2001	w	20.7	8.7	149	•
15-Jul-2003		21.61	8.22		
15-Sep-2003		19.24	8.01	153.45	< geom. mean
24-Nov-2003		10.6	7.9		
29-Jan-2004	w	2.6	7.67		
24-Mar-2004	w	8.1	8.1		
4-May-2004	w	15.57	8.2		
13-Jul-2004		22.4	7.47		
15-Sep-2004		17.91	7.59		
16-Nov-2004		9.96	7.91		
26-Jan-2005	w.	7.25	8.29		
22-Mar-2005	W	12.4	7.57		
9-May-2005	w	15.5	8.09		
13-Jul-2005		20.7	8.0		
19-Sep-2005		17.8	8.0		
28-Nov-2005		8.9	7.3		,
10-Jan-2006	w	10.6	8.8		
8-Mar-2006	w	10.4	8.2		
4-May-2006	w	15.3	6.8		
17-Jul-2006		21.5	8.0		
12-Sep-2006		17.3	8.1		
7-Nov-2006		8.9	7.5		
8-Apr-2010	w	16.9	6.9		
19-Apr-2010	w	15.1	8.0		
•					
90th% annual		23.07	8.67	< 90th percentile value	
90th% wet t	emp>	19.36	7.52	< 10th percentile value	
(w=wet months Jar	- May)				

VPDES Permit VA0001589
Steel Dynamics, Roanoke Bar Division
Reissuance 2011

ATTACHMENT B

- 1. 3-year summary of discharge data from Discharge Monitoring Reports for Outfall 005 flow, TSS, temperature, oil & grease, total residual chlorine, harness, pH, copper, lead and zinc
- 2. Memorandum regarding outfall 005 WET monitoring
- 3. Output from mix analysis MIX.exe
- 4. Memo Evaluation of Federal Effluent Guideline Based Limits including excerpt from Federal Effluent Guideline 40 CFR 420 Iron and Steel Industry, Subparts F Continuous Casting and G Hot Forming Primary Mills (without scarfing)

VPDES Permit VA0001589 Steel Dynamics, Roanoke Bar Division Reissuance 2011

Corporation	
Roanoke Electric Steel	Permit No: VA0001589

Outfall No:005

	Oil & Grease (kg/day)	load load	average maximum	<ql <ql<="" th=""><th><ql <ql<="" th=""><th>21.3 21.3</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>30.6 86.5</th><th></th><th>Hardness</th><th>Sample conc</th><th></th><th>200</th><th></th><th></th><th></th><th>,,</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Geo Mean</th><th>**</th><th></th><th></th><th></th><th></th><th></th></ql></th></ql>	<ql <ql<="" th=""><th>21.3 21.3</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>30.6 86.5</th><th></th><th>Hardness</th><th>Sample conc</th><th></th><th>200</th><th></th><th></th><th></th><th>,,</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Geo Mean</th><th>**</th><th></th><th></th><th></th><th></th><th></th></ql>	21.3 21.3											30.6 86.5		Hardness	Sample conc		200				,,												Geo Mean	**					
	TSS (kg/day)	load load	ma			1.22 1.22	0.3 0.3	4.46 4.46	3.54 3.54				,				113 318			• • • • • • • • • • • • • • • • • • •	TRC (ua/L)	conc.	Ë	•				<0L <0L			<0L <0L	<ql <ql<="" th=""><th><0L <0L</th><th>-QL <ql< th=""><th></th><th>187</th><th>53 108</th><th></th><th></th><th></th><th></th><th>readsheet</th><th>erature</th><th></th></ql<></th></ql>	<0L <0L	-QL <ql< th=""><th></th><th>187</th><th>53 108</th><th></th><th></th><th></th><th></th><th>readsheet</th><th>erature</th><th></th></ql<>		187	53 108					readsheet	erature	
		DMR		10-Jul-2007	10-Oct-2007	10-Jan-2008	10-Apr-2008	10-Jul-2008	10-Oct-2008	10-Jan-2009	10-Apr-2009	10-Jul-2009	10-Oct-2009	10-Jan-2010	10-Apr-2010		Limit					DMR	te		10-Oct-2007	10-Jan-2008	10-Apr-2008	10-Jul-2008	10-Oct-2008	10-Jan-2009	10-Apr-2009	10-Jul-2009	10-Oct-2009	10-Jan-2010	10-Apr-2010		Limit					< 90th percentile for use in WLA spreadsheet	< 90th percentile wet season temperature lang May	- IVIGY
Ş	lemp. (C)		maximum	28.7	29.1	28.8	29.7	30.3	28.1	29.6	29.1	22.8	21.5	27.5	23.9	26.3	29.6	28.8	28.1	29.4	29.1	26.9	23.2	27.8	21.1	22.1	26.2	26.4	25.7	30.0	29.6	29.9	28.6	25.7	22.9	19.9	27.4	21.6	23.4	-		٠.	29.65 < 90t	
í	MGD)		Maximum	0.0883	0.0875	0.0949	0.0978	0.1084	0.0946	9660.0	0.1013	0.1101	0.0961	0.1228	0.1335	0.1053	0.1129	0.1088	0.1098	0.1179	0.1086	0.1013	0.0911	0.0893	0.0840	0.0941	0.1084	0.0891	0.1105	0.0990	0.1010	0.0966	0.1276	0.1135	0.1268	0.1098	0.1045	0.0981	0.1032		킫			
Ī	FIOW (MGD)	•	Average	0.0627	0.0716	0.0723	0.0811	0.0897	0.0774	0.0773	0.0720	0.0799	0.0590	0.0823	0.0871	0.0832	0.0825	0.0829	0.0821	0.0850	0.0868	0.0639	0.0542	0.0548	0.0527	0.0552	0.0648	0.0563	0.0690	0.0789	0.0811	0.0684	0.0932	0.0783	0.0526	0.0625	0.0750	0.0582	0.0672		Z		0.0723	
		, J	Jue date	10-May-2007	/007-unc-01	10-Jul-2007	10-Aug-2007	10-Sep-2007	10-Oct-2007	10-Nov-2007	10-Dec-2007	10-Jan-2008	10-Feb-2008	10-Mar-2008	10-Apr-2008	10-May-2008	10-Jun-2008	10-Jul-2008	10-Aug-2008	10-Sep-2008	10-Oct-2008	10-Nov-2008	10-Dec-2008	10-Jan-2009	10-Feb-2009	10-Mar-2009	10-Apr-2009	10-May-2009	10-Jun-2009	10-Jul-2009	10-Aug-2009	10-Sep-2009	10-Oct-2009	10-Nov-2009	10-Dec-2009	10-Jan-2010	10-Feb-2010	10-Mar-2010	10-Apr-2010		Limit		Average: Max. 30-dav avg	

Roanoke Electric Steel Corporation Permit No: VA0001589

Outfall No:005

Permit No: VA000	1589			,	
	nU.	(c.u.)	pH excursion		H excursion
DMR due	рп	(s.u.)	time (minutes)		excursion inutes)
date	minimum	maximum	total	min.	max.
10-May-2007	7.06	8.22	0	0	0
10-May-2007	7.27	8.15	0	0	0
10-Jul-2007	6.98	8.26	0	0	0
10-3ui-2007 10-Aug-2007	6.94	8.22	0	. 0	0
10-Aug-2007 10-Sep-2007	7.21	8.49	0	0	0
10-Sep-2007 10-Oct-2007	7.21	8.74	0	0	0
10-Nov-2007	7.13	8.25	0	. 0	0
	6.72	8.26	0	0	0
10-Dec-2007	6.63	8.69	0	0	0
10-Jan-2008	6.69	8.23	0	0	0
10-Feb-2008		o.23 8.41	0	0	
10-Mar-2008	6.83				0
10-Apr-2008	7.20	8.22	. 0 0	0	0
10-May-2008	7.17	8.26	and the second of the first of the second of		0
10-Jun-2008	7.13	8.64	0	0	0
10-Jul-2008	6.81	8.67	0	, O	0
10-Aug-2008	6.87	8.67	0	0	0
10-Sep-2008	7.08	8.30	0	0	0
10-Oct-2008	6.69	8.21	0	0	0
10-Nov-2008	6.9	8.33	0	0	0
10-Dec-2008	6.94	8.46	0	0	0
10-Jan-2009	6.89	8.43	0	0	0
10-Feb-2009	7.09	8.26	0	0	0
10-Mar-2009	7.08	8.38	0	0	0
10-Apr-2009	6.97	8.30	0	. 0	0
10-May-2009	7.14	8.54	0	0	0
10-Jun-2009	6.69	8.58	0	0	0
10-Jul-2009	6.11	8.41	0 .	0	0
10-Aug-2009	6.40	8.62	0	0	0
10-Sep-2009	6.42	8.85	0	0	0
10-Oct-2009	6.82	8.59	0	0	0
10-Nov-2009	6.60	8.64	0	0	0
10-Dec-2009	6.60	8.94	0	0	0
10-Jan-2010	6.36	8.96	0	0	0
10-Feb-2010	7.04	8.79	0	0	0
10-Mar-2010	6.34	8.56	0	0	0
10-Apr-2010	6.64	8.29	0	0	0
Limit	6.0	9.0	446	60	60

< 90th percentile for use in WLA spreadsheet both min & max monthly pH values used < 10th percentile wet season pH Jan - May 8.667

^{8.22}

Roanoke Electric Steel Corporation Permit No: VA0001589

Outfall No:005

MEMORANDUM

DEPARTMENT OF ENVIRONMENTAL QUALITY Blue Ridge Regional Office - Roanoke Water Division

3019 Peters Creek Road

Roanoke, VA 24019

Subject: WET Testing; Chronic - C. dubia and P. promelas, Outfall 005

Steel Dynamics Roanoke Bar Division dba Roanoke Electric Steel, Roanoke

VPDES permit VA0001589

To: Fact Sheet 2010 VPDES Permit Reissuance

From: Susan K. Edwards, Environmental Engineer Senior

Date: April 2010

Discussion:

The wastewater treatment plant is designated outfall 005 and the subject of this series of tests. During the permit term Acute WET testing at this facility is also performed on storm water samples from outfall 001.

The results of the annual WET tests of effluent collected at outfall 005 are summarized in the table below. Industrial wastewater treatment plant 24-hour flow proportioned composite effluent samples are collected in an automatic sampler for the toxicity tests. Each data package and report was audited. Submittals were determined to be valid based on the appropriate review checklist. The Chronic IWC for the facility was 12.6%. The 2005 reissuance did not require the acute testing as test sensitivity was in the chronic results.

Results during this term are **not** chronically toxic in 3 out of 4 test years, but the two tests run in 2007 show chronic sensitivity in C. dubia, fathead minnows. Discussion with the permittee provided insight into the change in results. The 2007 results prompted Steel Dynamics to consider possible causes of the bioassay toxicity. The review concluded that the age of the sand filter media as suspect in reducing the treatment works effectiveness. The media in the sand filter was replaced and subsequent testing in 2008 and 2009 indicate the changes of treatment plant media were effective with much improved bioassay results.

Recommendations:

Revise frequency of testing to **semi-annual** sampling, testing and reporting of WET at the reissuance to offer shorter time to identify possible whole effluent toxicity problems than annual testing.

Chronic Toxicity Test Results - Outfall 005

	·			
Test <u>Date</u>	Test Organism	NOEC % Survival/Growth	<u>T.U.</u> c	% Survival in 100% Effluent
5/06	C. dubia	100	<1.00	100
5/06	P. promelas	100	<1.00	100
5/07	<u>C. dubia</u>	41	2.44	10
5/07	P. promelas	100	1.0	100
6/07	C. dubia	17	5.88	0
6/07	P. promelas	100	1.0	97.5
5-6/08	C. dubia	100	1.0	100
5-6/08	P. promelas	100	1.0	97.5
9/09	C. dubia	100	1.0	100
9/09	P. promelas	100	1.0	93

Mixing Zone Predictions for Steel Dynamics Roanoke Bar Division

Effluent Flow = 0.0932 MGD
Stream 7Q10 = 0.49 MGD
Stream 30Q10 = 0.69 MGD
Stream 1Q10 = 0.47 MGD
Stream slope = 0.005 ft/ft
Stream width = 16 ft
Bottom scale = 3
Channel scale = 1

Mixing Zone Predictions @ 7Q10

Depth = 0.1853 ft

Length = 980.95 ft

Velocity = 0.3066 ft/sec

Residence Time = 0.037 days

Recommendation: A complete mix assumption is appropriate for this situation and the entire 7Q10 may be used.

Mixing Zone Predictions @ 30Q10

Depth = 0.221 ft Length = 844.71 ft Velocity = 0.3438 ft/sec Residence Time = 0.0284 days

Recommendation: A complete mix assumption is appropriate for this situation and the entire 30Q10 may be used.

Mixing Zone Predictions @ 1Q10

Depth = 0.1816 ft
Length = 997.65 ft
Velocity = 0.3026 ft/sec
Residence Time = 0.9157 hours

Recommendation: A complete mix assumption is appropriate for this situation and the entire 1Q10 may be used.

Virginia DEQ Mixing Zone Analysis Version 2.1

MEMORANDUM

DEPARTMENT OF ENVIRONMENTAL QUALITY

Blue Ridge Regional Office, Roanoke - Water Division

3019 Peters Creek Road

Roanoke, VA 24019

Subject: Evaluation of Federal Effluent Guideline based limits, Outfall 005

Steel Dynamics Roanoke Bar Division, Roanoke; VPDES permit VA0001589

To:

VPDES Permit Fact Sheet for 2010 reissuance

From:

Susan K. Edwards, Environmental Engineer Senior

The Federal Effluent Guidelines (FEG) of 40 CFR 420 Iron and Steel Manufacturing Point Source Category applies to the discharge of the Roanoke Electric Steel plant. The plant is a non-integrated steel making mill. The applicable FEGs have not changed since the last reissuance. There was a revision to some portions of this Point Source Category on Oct. 17, 2002.

The Subpart F Federal Effluent Guideline limitation multipliers have not changed from the 1999 and 2005 limit evaluation.

Subpart D - Steelmaking does not apply because there is no contact process wastewater discharge associated with the steel making furnace area of the facility.

Subpart F *Continuous Casting* (420.62 and .63) and Subpart G *Hot Forming Primary* mills without scarfing (420.72(a)(1)) do apply to the facility. FEG limits are based on average daily throughputs of each part of the mill, in terms of kilograms per thousand kilograms of production. There are best practicable control technology currently available (BPT) and best available technology economically achievable (BAT) limit rates that apply within Subpart F and BPT limit rates in Subpart G.

Throughputs for <u>Subpart F - Continuous Casting</u> have changed from the last reissuance at 1,814,360 kg/day to a daily average of 1,311,000 kg/day based on the last 5-years of operation.

The throughput for <u>Subpart G - Hot Forming</u> at the mill has gone from 1,178,989 kg/day at the last reissuance to 1,353,000 kg/day as a 5-year daily average.

Limit calculations:

Section 420.62 gives BPT effluent limitation rates for Subpart F:

	Limitation mu	ıltiplier (kg/kkg)	<u>Effluent li</u>	mit (kg/day)
	Daily	Monthly	Daily	Monthly
<u>Parameter</u>	Max.	Average	Max.	<u>Average</u>
TSS	0.078	0.026	102.2	34.09
Oil & Grease	0.0234	0.0078	30.7	10.2
рH	6.0 - 9	.0 (S.U.)	6.0 - 9	.0 (S.U.)

Section 420.63 gives BAT effluent limitation rates for Subpart F:

	Limitation mult	iplier (kg/kkg)	Effluent lin	mit (kg/day)
	Daily	Monthly	Daily	Monthly
<u>Parameter</u>	Max.	<u>Average</u>	Max.	<u>Average</u>
Lead	0.0000939	0.0000313	0.123	0.041
Zinc	0.000141	0.0000469	0.185	0.061

Section 420.72(a)(1) gives BPT effluent limitation rates for Subpart G *Hot Forming* at primary mills without scarfing:

	Limitation mu	ıltiplier (kg/kkg)	Effluent li	imit (kg/day)
	Daily	Monthly	Daily	Monthly
<u>Parameter</u>	Max.	<u>Average</u>	Max.	<u>Average</u>
TSS	0.15	0.0561	203.0	66.14
Oil & Grease	0.0374	0.0125*	50.6	18.9
pН	6.0 - 9	.0 (S.U.)	6.0 - 9	.0 (S.U.)

^{*} Monthly average multiplier calculated from daily max using daily max. to monthly average ratio of TSS.

The limitations that are calculated above are added for the total FEG based limits for the plant's wastewater effluent:

	Effluent l	imit (kg/day)
•	Daily	Monthly
<u>Parameter</u>	Max.	<u>Average</u>
TSS	305.2	110.0
Oil & Grease	81.3	29.2
pН	6.0 -	9.0 (S.U.)
Lead*	0.123	0.041
Zinc*	0.185	0.0615

^{*} Lead and zinc are total recoverable limitations

The lead and zinc FEG load limits are then converted to concentrations for the permit as a better indication of on-going treatment plant performance using the highest monthly average discharge by the treatment plant in the last 3-year period, 0.0932 MGD:

	<u>Effluent l</u>	imit (mg/L)
	Daily	Monthly
<u>Parameter</u>	Max.	<u>Average</u>
Lead*	0.349	0.116
Zinc*	0.524	0.174

^{*} Lead and zinc are total recoverable limitations

Title 40: Protection of Environment

PART 420 - IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY

Subpart D - Steelmaking Subcategory

§ 420.40 Applicability; description of the steelmaking subcategory.

The provisions of this subpart are applicable to discharges and to the introduction of pollutants into publicly owned treatment works resulting from steelmaking operations conducted in basic oxygen and electric arc furnaces.

§ 420.41 Specialized definitions.

- (a) The term basic oxygen furnace steelmaking means the production of steel from molten iron, steel scrap, fluxes, and various combinations thereof, in refractory lined furnaces by adding oxygen.
- (b) [Reserved]
- (c) The term *electric arc furnace steelmaking* means the production of steel principally from steel scrap and fluxes in refractory lined furnaces by passing an electric current through the scrap or steel bath.
- (d) The term wet means those steelmaking air cleaning systems that primarily use water for furnace gas cleaning.
- (e) The term *semi-wet* means those steelmaking air cleaning systems that use water for the sole purpose of conditioning the temperature and humidity of furnace gases such that the gases may be cleaned in dry air pollution control systems.
- (f) The term *open combustion* means those basic oxygen furnace steelmaking wet air cleaning systems which are designed to allow excess air to enter the air pollution control system for the purpose of combusting the carbon monoxide in furnace gases.
- (g) The term *suppressed combustion* means those basic oxygen furnace steelmaking wet air cleaning systems which are designed to limit or suppress the combustion of carbon monoxide in furnace gases by restricting the amount of excess air entering the air pollution control system.

Subpart F - Continuous Casting Subcategory

§ 420.60 Applicability; description of the continuous casting subcategory.

The provisions of this subpart are applicable to discharges and to the introduction of pollutants into publicly owned treatment works resulting from the continous casting of molten steel into intermediate or semi-finished steel products through water cooled molds.

§ 420.62 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT).

Except as provided in 40 CFR 125.30 through 125.32, any existing point source subject to this subpart must achieve the following effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available.

Subpart F

		BPT effluent limitations
Pollutant or pollutant property	Maximum for any 1 day	Average of daily values for 30 consecutive days
	Kg/kk	g (pounds per 1,000 lb) of product
TSS	0.0780	0.0260
Oil & Grease	0.0234	0.0078
pH	(¹)	(1)

¹Within the range of 6.0 to 9.0.

§ 420.63 Effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology economically achievable (BAT).

Except as provided in 40 CFR 125.30 through 125.32, any existing point source subject to this subpart must achieve the following effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology economically achievable.

Subpart F

	'	BAT effluent limitations
Pollutant or pollutant property	Maximum for any 1 day	Average of daily values for 30 consecutive days
	Kg/kk	g (pounds per 1,000 lb) of product
Lead	0.0000939	0.0000313
Zinc	0.000141	0.000469

Subpart G - Hot Forming Subcategory

§ 420.70 Applicability; description of the hot forming subcategory.

The provisions of this subpart are applicable to discharges and to the introduction of pollutants into publicly owned treatment works resulting from hot forming operations conducted in primary, section, flat, and pipe and tube mills.

§ 420.71 Specialized definitions.

- (a) The term hot forming means those steel operations in which solidified, heated steel is shaped by rolls.
- (b) The term *primary mill* means those steel hot forming operations that reduce ingots to blooms or slabs by passing the ingots between rotating steel rolls. The first hot forming operation performed on solidified steel after it is removed from the ingot molds is carried out on a "primary mill".
- (c) The term section mill means those steel hot forming operations that produce a variety of finished and semi-finished steel products other than the products of those mills specified below in paragraphs (d), (e), (g), and (h) of this section.
- (d) The term flat mill means those steel hot forming operations that reduce heated slabs to plates, strip and sheet, or skelp.
- (e) The term pipe and tube mill means those steel hot forming operations that produce butt welded or seamless tubular steel products.
- (f) The term scarfing means those steel surface conditioning operations in which flames generated by the combustion of oxygen and fuel are used to remove surface metal imperfections from slabs, billets, or blooms.
- (g) The term *plate mill* means those steel hot forming operations that produce flat hot-rolled products which are (1) between 8 and 48 inches wide and over 0.23 inches thick; or (2) greater than 48 inches wide and over 0.18 inches thick.
- (h) The term hot strip and sheet mill means those steel hot forming operations that produce flat hot-rolled products other than plates.
- (i) The term *specialty steel* means those steel products containing alloying elements which are added to enhance the properties of the steel product when individual alloying elements (e.g., aluminum, chromium, cobalt, columbium, molybdenum, nickel, titanium, tungsten, vanadium, zirconium) exceed 3% or the total of all alloying elements exceed 5%.
- (j) The term carbon steel means those steel products other than specialty steel products.
- (k) The term carbon hot forming operation (or "carbon") means those hot forming operations which produce a majority, on a tonnage basis, of carbon steel products.
- (I) The term specialty hot forming operation (or "specialty") applies to all hot forming operations other than "carbon hot forming operations."

§ 420.72 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT).

Except as provided in 40 CFR 125.30 through 125.32, any existing point source subject to this subpart must achieve the following effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available.

(a) Primary mills, carbon and specialty —(1) Without scarfing.

Subpart G

		BPT effluent limitations
Pollutant or pollutant property	Maximum for any 1 day	Average of daily values for 30 consecutive days
	Kg/kk	g (pounds per 1,000 lb) of product
TSS	0.150	0.0561
0&G	0.0374	
pH	(1)	(¹)

¹Within the range of 6.0 to 9.0.

§ 420.73 Effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology economically achievable (BAT).

The Agency has determined that there are not significant quantities of toxic pollutants in hot forming wastewaters after compliance with applicable BPT limitations. Accordingly, since the BPT level of treatment provides adequate control, the Agency is not promulgating more stringent BAT limitations.

VA00001589

Roanoke Electric Steel Corp. Federal Effluent Guideline based limit calculations 2010 reissuance

FEG Effluent Limits

Suppart F - Contil	iuous Casung			
Throughput	1,311,000	kg/day		
	<u>daily max</u>	monthly avg		
T00	0.070	0.000	/I /I -I \	

	<u>dally max</u>	monuny avg		dally max	monthly avg	
TSS	0.078	0.026	(kg/kkg)	102.258	34.086	(kg/day)
Oil & Grease	0.0234	0.0078	(kg/kkg)	30.677	10.226	(kg/day)
pH (S.U.)	6.0	- 9.0		6.0	- 9.0	
Lead	0.0000939	0.0000313	(kg/kkg)	0.1231	0.0410	(kg/day)
Zinc	0.000141	0.0000469	(kg/kkg)	0.1849	0.0615	(kg/day)

Subpart G - Hot Forming

Throughput	1,353,000	kg/day				
en e	daily max	monthly avg		daily max	monthly avg	and the second second
TSS	0.15	0.0561	(kg/kkg)	202.950	75.903	(kg/day)
Oil & Grease	0.0374	0.0139876	(kg/kkg)	50.602	18.925	(kg/day)
рΗ	6.0	- 9.0		6.0 -	- 9.0	

* monthly avg. oil & grease BPT multiplier based on ratio daily max to monthly avg of TSS

Combined Effluent Limitations	daily max	monthly avg	
TSS	305.2	110.0	(kg/day)
Oil & Grease	81.3	29.2	(kg/day)
pH (S.U.)	6.0	- 9.0	
Lead	0.1231	0.0410	(kg/day)
Zinc	0.1849	0.0615	(kg/day)

Convert load to concentration at design flow of treatment plant

Design flow	0.1	(MGD)		0.0932	(MGD)	
	daily max	monthly avg		daily max	monthly avg	
Lead load	0.1231	0.0410	(kg/day)	0.1231	0.0410	(kg/day)
Zinc load	0.1849	0.0615	(kg/day)	0.1849	0.0615	(kg/day)
Lead conc.	0.325	0.108	(mg/l)	0.349	0.116	(mg/l)
Zinc conc.	0.488	0.162	(mg/l)	0.524	0.174	(mg/l)

VPDES Permit VA0001589 Steel Dynamics, Roanoke Bar Division Reissuance 2011

ATTACHMENT C

- 1. Anti-degradation wasteload allocation spreadsheet from 1999 reissuance updated with 2010 stream flows, effluent and receiving stream water quality data AWLA99update2010
- 2. STATS.exe statistics evaluation output file using acute & chronic AWLA99update2010 wasteload allocations and concentrations calculated from FEG load limits at treatment plant 30-day maximum flow Lead and Zinc
- 3. STATS.exe statistics evaluation output file using acute & chronic AWLA99update2010 wasteload allocations to update limits for total residual chlorine, copper, lead and zinc
- 4. 2010 MSTRANTI spreadsheet 2010 anti-degradation wasteload allocation spreadsheet with current stream and effluent flows and water quality parameters
- 5. STATS.exe output files for limit evaluation of nickel

VPDES Permit VA0001589 Steel Dynamics, Roanoke Bar Division Reissuance 2011

WLA Analysis For:	Steel Dynamics Roanoke Bar [Roanoke Bar I		ANTIDEGRADATION		Date: 04/	04/20/10		Spreadsheet for	Spreadsheet for Chronic and Human Health AWLAs	uman Health AW	LAs		
Stream:	Peters Creek	盂	Effluent Information	uo					Hardness					
Mean Hardness (mg/L) =	153.45		Mean Hardness=	=SS=		335			atility	183		Mix Hordanan	4	-
Stream NH3 (mg/L)	0		NH3 (mg/l)=						obronio	3 5	-	אווא ו זמו תוומססיי	acnie.	9
90% Temperature	23.07		90% Temn =			20.65			2010110	701		:	chronic	182
Ha %06	8.67		90% nH=			8 867			A CAROL RAUD	0.30		. WLAa		
Fractional 7Q10-MGD	0.494	100% of 7010 Flow MGD=	Flow MGD=			0.007			בופצי סו אי	0.10		Coefficient =		0.328
Fractional 1Q10-MGD	0.475	100% of 1Q10)				Harmonic ratio			Acute IVVC =		0.164
Harmonic mean (carcinogen):	2.47								3005 ratio	0.72				0.138
30Q5 Flow (Non-carcinogen):	0.791									?				
R(iver),L(ake) or S(torm):	œ								NOTE	NOTE: 90th percentile pH and temperature for effluent	pH and tempera	ture for effluent		
Trout Present? (Y/N)	C (Aqui	Aquatic Protection	_		Human Health			based on DMR	based on DMR reported daily maximums.	aximums.		
rubiic water Supply(1/N).	=		Fres	rresnwater Criteria	co!					Hardness data	from 005 WET r	eports		
				Evieting	u	viction								
		Sort	Δ		Chronic	O valify	Cule Total Inc.			Č				
Parameter and Form	Carcinonen	S (N)	Criteria	2+ 1010							Human Health	Acute	Chronic	Human Health
						2		Concentration	Dasellie	Daseille	paseline	AWLA	A WLA	A WLA
Ammonia (mg/l as N)		>	1 423	0.082	0.324	950.0	Onoly	2	007.0					
Arsenic		>	Cacia	200.0	170.0	3	DION	0.00	0.402		0.00	2.45	0.78	N/A
Codmin		- >	111111111111111111111111111111111111111		NOIR NOIR		ne	0.0	0.000		2.00	N/A	A/N	47.44
Cadillidill		-	//"/		1.82		None	0.00	1.941	0.454	00:00	11.84	2.86	A/N
Chlorine		>	19	11.60	11	10.90	None	0.00	13.450		00.00	82 00	68.83	A/N
Chloroform	C	>	None		None		47000	00.00	0000	L	4700 00	DIV.	V/V	120260 00
Copper		>	31,36	7.93	19.75	7.49	Anna	0.87	13 788	10.00	0000	CO 02	V/N	128200.08
i		>	2851 48		338 42	2	Nono	5 6	71.00		00.0	79.67	62.03	A/Z
Crhox		- >	4001.40	1	330.42		Norie	0.00	712.8/0		0.00	4346.06	533.04	N/A
VOILIO		-;	0 10				None	0.00	4.000		0.00	24.39	17.33	N/A
		- :	cn./cz	1.85	29.01	1.78	None	0.77	65.650		0.00	396.31	50.02	N/A
Mercury		>	2.4		0.012		0.053	0.00	0.600		0.01	3 66	600	0.05
Nickel		>-	304.99		33.78		4600	0.00	76.248		460 00	464.85	53.20	1384 DB
Selenium		>	20		5		11000	0.0	5.000	L	1100 00	30.48	7 88	10425.00
Silver		>-	11.50		None		None	A/N	2 875	L	00.00	47.50	00.7	10.00
Xylenes, Total		>	740		74			VIV	105.000		00.0	20.71	¥/N	K/X
Zinc		>	105.48	11 78	176 97	44.40	00014	2 2	100.000		00.00	1127.86	116.56	N/A
1 1_dichloroathylana			Nono		170.21	2	Noile	2.32	cn/./c		0.00	340.00	318.24	NA
1.2 dichlorobonzono		= '	DION S		NOIN		000/1	N/A	0.000		1700.00	N/A	N/A	46753.65
4.0 distinguishess	,	=	Notic		None		1/000	A/A	0.000	0.000	1700.00	N/A	A/N	16128.11
1 0 4 triplication	٥	=	None		None		066	N/A	0.000		99.00	N/A	A/N	2722.71
1,2,4-tilcilloroperizerie		_	None		None		920	N/A	0.000	0.000	95.00	A/N	ΑN	2612 70
1,3-dichlorobenzene		c	None		None		2600	₹X V	0.000		260.00	N/A	A/N	2466 65
1,4-dichlorobenzene		c	None		None		2600	N/A	0000		260.00	A/N	VIV	2466.65
2-Chlorophenol		u	None		None		400	Α'N	0000		40.00	D/N		100.00
2,4-dichlorophenol		c	None		None		790	A/N	0000		20.02		T	80.08
2,4-dichlorophenoxy acetic acid		5	None		None		None	VIV.	000.0		00.67	¥ .	Y/N	71/2.6/
2.4-dimethylphenol			acci		oroly		2300		0.00		0.00	N/A	N/A	N/A
2 4 dinitrotoliana	ر		Sign		200		2300	Y/N	0.00		230.00	N/A	N/A	6325.49
2.4 6-Trichlomphanol	٥	= 0	None		None		91	∀N.	0.000	ļ	9.10	A/A	N/A	250.27
Accompthone		= 1	ואסומ		NO.		CO	N/A	0.000		6.50	N/A	A/N	178.76
Aceriaphiniene	ļ		None		None		2700	N/A	0.000		270.00	N/A	ΑN	7425 58
Adilli	ر	_	m		0.3		0.0014	N/A	0.750	0.075	00.00	4.57	0.47	000
Anniacene		c	None		None		110000	N/A	0.000		11000.00	A/A	4X	104358 37
Antimony		c	None		None		4300	N/A	0.000		430.00	A/N	A/N	11825 92
Arsenic-3		د	360		190		None	N/A	90.000	47.500	00.00	548 69	299 27	A/N
Banum		۲	None		None		None	N/A	0.000		000	A/N	D/N	VIV
Benzene	ပ	c	530	_	23		710	A/N	132 500	L	71.00	00 200	07 00	0.00
Benzo(a)anthracene	ပ	_	None		None		0.049	Δ/N			200	00.700	07.70	1907.00
Benzo(a)pyrene	ပ	c	None		au oN		0700	C VIV	0000		0.0048	¥N.	N/A	0.13
Benzo(b)fluoranthene	c	c	oucly oucly		OLON O		0,00	()	0.000		0.0049	N/A	ΑN	0.13
Benzo(k)fluoranthene	0	: 6	OLON OLON		2012		0.049	¥.	0.000		0.0049	N/A	N/A	0.13
Dromoform	,	=	200		None		0.049	A/A	0000	0.000	0.0049	N/A	ΑN	0.13
	اد	=	None		None		3600	N/A	0.000	0.000	360.00	A/N	A/N	77 0066
Dutyl belizyl pritrialate		c	None		None		5200	A/N	0.000	_	520.00	A/N	A/N	14301 12
Carbon Letrachloride	ပ	c	None		None		45	Ϋ́N	0000	0000	4 50	A/N	VIV	47001
Chlordane	ပ	c	2.4		0.0043		0.0059	A/N	000		8 6	V 00 C	1	0/37/0
Chloride		c	880000		23000		Nono		0000	+	0.00	3.00	0.0	0.02
Chlorodibromomethane			0000		200000		Norie	A/A	215000.000	-+	0.00	1310761.80	362274.68	N/A
Phlomyrifoe		= '	None		None		27000	Ϋ́	0.000	0.000	5700.00	N/A	N/A	54076.61
Chargon	,	=	0.083		0.041		None	N/A	0.021	0.010	00.00	0.13	90.0	A/N
Cinida	ر	c	None		None		0.049	N/A	0.000	_	0.0049	N/A	A/N	0 13
Cyanide		c	22		5.2		215000	N/A	5.500	1.300	21500.00	33.53	8 19	203973 18
						: 						22:22	2	200010.10 I

	n 1.1
	accN
ne 0.1	
	None
	None
	and
	None
0	0
	None
No	None
	4
	0.22 0
0.0023	0.18 0.
	3200
None	n None None
	None
	None
	0.52
	2
	anoN
Z	None
	None
None	None
	n None None
0.08	
	n None 0.03
	n None None
	None
None	None
	None
)	0.065
	None
	0.07
	None
	None
	None
None	None
	None
None	
Z	n None None
	n 31
Z	None
	1750
	duck
	0.73
	0.73
	0.40
None	DION 4
	1000
None None	

Footnotes:

- All concentrations expressed as micrograms per liter (ug/L), except Ammonia.
 Ammonia (as mg/L) selected from separate tables, based on pH and temprature.
 Acute-1 hour avg. concentration not to be exceeded more than 1/3years.
 Chronic-4 day avg.concentration not to be exceeded more than 1/3years.
 Complete mix-mass balances employ 30Q5 for Non-carcinogens, and Harmonic Mean for Carcinogens.
 All flow values are expressed as Million Gallons per Day.

STATS.exe Evaluation of FEG load based Lead & Zinc Concentrations

[349 daily max. & 116 monthly avg. ug/L conc. from FEG load at 0.0932 MGD max. monthly avg. flow]

Facility	Steel Dynamics		Expected Value Variance	232.5 19460.2		
Chemical	emical Lead FEG conc WQS limit		C.V.	0.6		
Is Ammonia	being Analyzed?	C Yes No	97th percentile - D 97th percentile: 4 97th percentile 30	day 386.831		
WLAa	396.31		# < Q.L.	0		
WLAc	50.02					
Q.L.	5					
# samples/n # samples/v			Model used Bl	PJ Assumptions, type 2 data		
и заприсат	TK. [1			F-0		
		Type data :	Limit needed? Y	'ES		
# items	2	Press Enter	Basis for limits CI	hronic Toxicity		
	349		Maximum Daily Limit	73.1579906983426		
Data List	116		Weekly Average Lim	it 73.1579906983426		
			Monthly Average Lim	nit 73.1579906983426		
To remove a datum: double click on it			Note: The Average weekly limit applies to domestic facilities. The Daily Maximum limit applies to industrial facilities The Monthly average limit applies to both			
		Calculat Statistic	Πραγούλου ::	RESET		

[524 daily max. & 174 monthly avg. ug/L conc. from FEG load at 0.0932 MGD max. monthly avg. flow]

Facility	Steel Dynamics		Expected Value)	349 43848.3		
Chemical	Zinc FEG conc WQS limit		C.V.		0.6		
	being Analyzed?	C Yes	97th percentile 97th percentile 97th percentile	4 day	849.262 580.662 420.912		
WLAa	340.00		# < Q.L.		0		
WLAc Q.L.	318.24 5						
# samples/m	-						
# samples/w			Model used	BPJ Assur	mptions, type 2 data		
	· ·]	Limit needed?	YES			
Enter Data		Type data :	Limit needed?	TES			
# items	2	Press Enter	Basis for limits Acute Toxicity				
	524		Maximum Daily Li	mit 340			
Data List	174		Weekly Average Limit 340				
		Property and the con-	Monthly Average Limit 340				
To remove a datum: double click on it.			Note: The Average weekly limit applies to domestic facilities. The Daily Maximum limit applies to industrial facilities The Monthly average limit applies to both				
		Calculate Statistics	- i		RESET		

Water Quality Standards Limit Confirmation TRC & Copper [Using the 1999 AWLA spreadsheet updated with 2010 flows & data from 1999 reissuance]

Facility Chemical	-	WQS confirmation esidual 1999 data	Expected Value Variance C.V. 97th percentile - Daily		7.44178 19.9368 0.6		
Is Ammonia being Analyzed? C Yes © No. WLAa 82 WLAc 68.83		97th percentile: 4 day 97th percentile: 30 day # < Q.L.		18.1089 12.3815 8.97518 1			
Q.L. # samples/n # samples/w Enter Data # items	ık. 1	Type data : Press Enter	Model used Limit needed? Basis for limits	BPJ Assun NO N/A	imptions, Type 1 data		
Data List	<1 350 60		Maximum Daily Li Weekly Average I Monthly Average	Limit N/A			
To remove a datum: double click on it.		Calculate Statistics	Note: The Average week! The Daily Maximum The Monthly averag	limit applies	s to industrial		

Facility	Steel Dynamics	WQS confirmation	Expected Value Variance		57.4 1186.11	
Chemical	Chemical Copper 1999 data		C.V.		0.6	
Is Ammonia being Analyzed? Yes No			97th percentile - Daily 97th percentile: 4 day 97th percentile 30 day		139.678 95.5015 69.2274	
WLAa	79.62		# < Q.L.		0	
WLAc	61.89					
Q.L.	10	100				
# samples/	-		Model used	BPJ Assum	ptions, type 2 data	
# samples/	MK. 1					
Enter Data	,	Type data :	Limit needed?	YES	1438	
# items		Press Enter	Basis for limits	Acute Toxi	city	
	57.4		Maximum Daily Li	imit 7 9.62	2	
Data List			Weekly Average Limit 79.62			
			Monthly Average	Limit 79.62	2	
To remove a datum: double click on it			Note: The Average weekly limit applies to domestic facilities. The Daily Maximum limit applies to industrial facilities The Monthly average limit applies to both			
		Calculate Statistics			RESET	

Water Quality Standards Limit Confirmation Lead & Zinc [Using the 1999 AWLA spreadsheet updated with 2010 flows & single data point from 1999 reissuance]

Facility	Steel Dynamics		Expected Value	35 (4.5) 4.5 4.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	9.4 31.8096	
Chemical	Lead 1999 data	2010 flows AWLA	C.V.		0.6	
Is Ammonia b	eing Analyzed?	C Yes © No	97th percentile 97th percentile: 97th percentile	4 day	22.8741 15.6396 11.3369	
WLAa WLAc Q.L.	396.31 50.02 5		# < Q.L.		0	
# samples/m # samples/wl			Model used	BPJ Assum	ptions, type 2	data
Enter Data	in the second se	Type data : Press Enter	Limit needed? Basis for limits	NO N/A	-	
300	9.4		Maximum Daily Li	mit N/A		
Data List		100 mg	Weekly Average	Limit N/A		
			Monthly Average	Limit N/A		
To remove a datum: double click on it.			Note: The Average week! The Daily Maximum The Monthly averag	limit applies	to industrial f	
		Calculate Statistics			RESET	
	iteel Dynamics		Expected Value Variance		78 2190.24	
Chemical Z	Zinc 1999 data 2	2010 flows AWLA	C.V. 97th percentile -	Daily	0.6 189.806	
s Ammonia be	eing Analyzed?	C Yes	97th percentile: 97th percentile 3	4 day	129.775 94.0721	Self-self-self-self-self-self-self-self-s
WLAa WLAc Q.L.	340.00 318.24 1		# < Q.L.		0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
‡ samples/mo ‡ samples/wk	•		Model used	BPJ Assump	tions, type 2	data
Enter Data		Type data :	Limit needed?	NO	10000	
# items	ę ę ę ę ę ę ę ę ę ę ę ę ę ę ę ę ę ę ę	Press Enter	Basis for limits	N/A	·	
	78		Maximum Daily Lin	nit N/A		
Data List			Weekly Average L	imit N/A		
Data Live		Company of the Compan	Monthly Average I	.imit N/A		
To remove a datum: double click on it.			Note: The Average weekly The Daily Maximum I The Monthly average	imit applies I	to industrial fa	
		Calculate Statistics	7.3. PEN		RESET	

FRESHWATER WATER QUALITY CRITERIA / WASTELOAD ALLOCATION ANALYSIS

Steel Dynamics Roanoke Bar Division

Permit No.: VA0001589

Facility Name:

Peters Creek

Receiving Stream:

Version: OWP Guidance Memo 00-2011 (8/24/00)

29.65 deg C 29.65 deg C

8.667 SU 8.22 SU

335 mg/L

Mean Hardness (as CaCO3) =

Effluent Information

90% Temp (Wet season) = 90% Temp (Annual) =

90% Maximum pH = 10% Maximum pH =

100 % 100 %

- 30Q10 Mix = Season - 1Q10 Mix = - 30Q10 Mix =

100 % 100 % 100 %

Discharge Flow =

0.0932 MGD

Stream Information		Stream Flows	Mixing Information
Mean Hardness (as CaCO3) =	153 mg/L	1Q10 (Annual) = 0.47 MGD	<
90% Temperature (Annual) =	23.07 deg C	7Q10 (Annual) = 0.49 MGD	
90% Temperature (Wet season) =	19.36 deg C	30Q10 (Annual) = 0.69 MGD	
90% Maximum pH =	8.67 SU	1Q10 (Wet season) = 1.13 MGD	Wet Se
10% Maximum pH =	7.52 SU	30Q10 (Wet season) 2.45 MGD	
Tier Designation (1 or 2) =	2	30Q5 = 0.79 MGD	
Public Water Supply (PWS) Y/N? =	c	Harmonic Mean = 2.47 MGD	GD GD
Trout Present Y/N? =	С	ACCOMPANIAN AND ACCOMPANIAN AND ACCOMPANIAN AND ACCOMPANIAN AND ACCOMPANIAN AND ACCOMPANIAN AND ACCOMPANIAN ACCOMP	
Early Life Stages Present Y/N? =	Å		

Most Limiting Allocations	HH (PWC)	na 97			na 6.3E+00		na	na 3.8E+04				1.4												4			23
Most I imit	Chronic	-	:	۱.	l 1	9.4E-01	4.0E+00	1	ı	2.3E+02	:	;		;	:		1	ı	;	ŀ	;	1	2.8E+00		6.7E-03	3.6E+05	
	Acute	-	ı	ł	4.5E+00	3.5E+00	7.6E+00	ı	1	5.1E+02	ı		ı	;	:	ŀ	:	,		1	ŀ	:	1.2E+01	;	3.6E+00	1.3E+06	
	Ŧ	9.4E+02	8.8E+00	00+40	1.4E-03	ł	ı	3.8E+04	6.1E+02	ı	ı	1.4E+03	5.5E-03	5.0E-01	5.0E-01	5.0E-01	5.0E-01	1.5E+01	6.2E+04	6.1E+01	3.9E+03	1.8E+03	1	4.4E+01	2.2E-02	ı	
Allocation	HH (PWS)	na	g		<u> </u>	па	ā	БП	na	na	na	БП	B	БП	па	na	Б	ā	B	ā	па	ā	па	па	ā	БП	
Antidegradation Allocations	Chronic		. 1	ı	ł	9.4E-01	4.0E+00	ı	1	2.3E+02	ı	ı	,	ı	ı	1	I	ı	ı	l	1	1	2.8E+00	1	6.7E-03	3.6E+05	
Ani	Acute		ı	ı	4.5E+00	3.5E+00	7.6E+00	ı		5.1E+02	ı	ı	ı	ı	ı	ı	ı	ı	ı	1	ı	1	1.2E+01	ı	3.6E+00	1.3E+06	
	壬	9.9E+01	9.3E-01	2.5E-01	5.0E-05	ı	,	4.0E+03	6.4E+01	1	1	5.1E+01	2.0E-04	1.8E-02	1.8E-02	1.8E-02	1.8E-02	5.3E-01	6.5E+03	2.2E+00	1.4E+02	1.9E+02	1	1.6E+00	8.1E-04	ı	
n Baseline	H (PWS)		ā	8	па	E .	e E	na	na	ā	na	g	na	, E	na	na	na	ā	па	na	na	E C	na Bu	ВП	па	na	
Antidegradation Baseline	Chronic HH (PWS)		1	ı	ı	1.12E-01	1.46E-01	1	ı	3.8E+01	· _I .	:	ı	1	1	t	, 1	ı	ı	1	. 1	1	4.5E-01 ·	1	1.1E-03	5.8E+04	
Ā	Acute	,	ı	ı	7.5E-01	5.83E-01 1	5.82E-01 1	ı	ı	8.5E+01	ı		1	ı	ı	i	ı	1	ŀ	J	ı	1	1.9E+00	1	6.0E-01	2.2E+05 (
	Ŧ	9.4E+03	8.8E+01	6.9E+01	1.4E-02	ı	1	3.8E+05	6.1E+03		ı	1.4E+04	5.5E-02	5.0E+00	5.0E+00	5.0E+00	5.0E+00	1.5E+02	6.2E+05	6.1E+02	3.9E+04	1.8E+04	ţ	4.4E+02	2.2E-01	1	
1 Allocations	HH (PWS)	Па	na	na en	БП	a	ā	ВП	na	na	e c	E L	na	na	Bu	na	na	na	na	er.	na	na	na	na.	na	, a	
Wasteload All	Chronic HF	,	ı	,	1	3.8E+00	6E+01	ı	i	9.4E+02	ı	ı	1		ı	1	1	1	1	ı		ı	1.15+01	ı	2.7E-02	1.4E+06	
>	Acute	1	1	ı	1.8E+01	1.4E+01 3.	3.1E+01 1.6E+01	1	ı	2.1E+03 9.	1	ı	ı	. 1	1	ı		ı		ı	- 1	1	4.7E+01 1.	. 1	1.5E+01 2	5.2E+06 1.	
	Ŧ	9.9E+02	9.3E+00	2.5E+00	5.0E-04	ı	ı	4.0E+04	6.4E+02	1	ı	5.1E+02	2.0E-03	1.8E-01	1.8E-01	1.8E-01	1.8E-01	5.3E+00	6.5E+04	2.2E+01	1.4E+03	1.9E+03	i	1.6E+01	8.1E-03	t	
Criteria	HH (PWS)	na	na	na	ā	na	BE	na	na	na	na	Ba	na	na	B	na E	Б	na	na	na	па	na	na	па	па	na.	
Water Quality Criteria	Chronic HI	1	ı	1	1	4.48E-01	5.84E-01	ı	ı	1.5E+02	ı	1	ı	ı	ı	1	ı	i	1	ı	ı	ı	1.8E+00	ı	4.3E-03	2.3E+05	
S	Acute	ı	ı	1	3.0E+00	2.33E+00 4	2.33E+00 5	ı		3.4E+02	ı	ı	1	i		. 1	ł	ı	t	ı	1	ı	7.8E+00 1		2.4E+00 4		
Background	Conc.	0	0	0	0	0 2	0 2	0	0	0	Ö	0	0	0	0	0	0	0	0	0	0	O	. 0	0	0	0	
Parameter	(ug/l unless noted)	Acenapthene	Acrolein	Acrylonitrile ^c	Aldrin ^C	(Yearly)	(High Flow)	Anthracene	Antimony	Arsenic	Barium	Benzene	Benzidine	Benzo (a) anthracene	Benzo (b) fluoranthene	Benzo (k) fluoranthene	Benzo (a) pyrene	Bis2-Chloroethyl Ether	Bis2-Chloroisopropyl Ether	Bis 2-Ethylhexyl Phthalate ^C	Bromoform 5	Butylbenzylphthalate	Cadmium	Carbon Tetrachlonde	Chlordane 2	Chloride	C L

4	
ď	
e 2	
page	

Parameter	Background		Water Quality Criteria	Criteria		M _S	Wasteload Allocations	ocations		And	Antidegradation Baseline	Baseline		tu4	Antideoradation Allocations	Allocations		84	ort I miting	More Limiting Allegation	
(ug/l unless noted)	Conc.	Acute	Chronic H	HH (PWS)	픞	Acute Cl	Chronic HH (PWS)	(PWS)	壬	Acute	Chronic HH (PWS)	4 (PWS)	王	Acute	Chronic HH (PWS)	(SMS)	Ŧ	Acute	Chronic HH (PWS)	H (PWS)	=
Chlorodibromomethane ^C	0	ı	-	na	1.3E+02			1	 g	1		1	1.3E+01			4	3 8E+03	1	2110	(24 1)	1111
Chloroform	0	ı	ı	Б	1.1E+04	ı	1		1 0F+05	1	ļ		1. Ст. Ст. Ст. Ст. Ст. Ст. Ст. Ст. Ст. Ст		ł		20.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	:	1 -	E	3.6E+02
2-Chloronaphthalene	O	ı	ı	<u> </u>	1.6E+03	I		er.	1.5F±04		,		2011	·	ļ			:	:	E	1.05+04
2-Chlorophenol	c	ı	1		1 5E + 0.0	1	1	- T	1 1 1	ı	ì		20-102	ı	ı		1.51+03	:	:	na	1.5E+03
Chlomorifos) C	8 3E_03	4 1 11 00	ğ (20.1	ו ו	1 10	_ _ _			i i		1.5E+01	1	1		1.4E+02		ı	na E	1.4E+02
Chromina III	o 6	0.35.02	7 1.1	<u> </u>	ı		10-10	E E			1.05-02	e E	ı	1.3E-01	6.4E-02	Б	1		6.4E-02	na	,
)	8.45+02	1.25+02	œ	1		7.6E+02	e E	1		3.0E+01	na	ı	1.4E+03	1.9E+02	na B	1	1.4E+03	1.9E+02	na	ı
Chromium VI	0	1.6E+01	1.1E+01	a	:	9.7E+01 6.9	6.9E+01	na	1	4.0E+00 2	2.8E+00	na B	i	2.4E+01	1.7E+01	Б	1	2.4E+01	1.7E+01	na	ı
Chromium, Total	0	ı	1	1.0E+02	1	ı	1	na	1		1	1.0E+01	ı	ı	ı	9.5E+01	1	ı	ı	В	,
Chrysene C	0	ı	ı	E.	1.8E-02	ı	ı	na t	5.0E-01	ı	,,)	E E	1.8E-03	ı	ı	na	5.0E-02	ı	ŧ	<u> </u>	5.0E-02
Copper	0	2.4E+01	1.5E+01	5	1	1.4E+02 9.4	9.4E+01	па	1	5.9E+00 3	3.7E+00	na	ı	3.6E+01	2.3E+01	па		5	2.3E+01		:
Cyanide, Free	0	2.2E+01	5.2E+00	Па	1.6E+04	1.3E+02 3.	3.35+01	na 1	1.5E+05 5	5.5E+00 1	1.3E+00	na	1.6E+03	3.35+01	8.1E+00		1.5F+04		8 1E+00	1 2	1 50.00
۵۵۵ €	0	ı	ı	na	3.1E-03	1	. 1	na 8	8.5E-02	ı	ı		3.1E-04		: ! !				2	<u> </u>	40-104 20-11-04
DDE ¢	0	ı	1	na	2.2E-03		ı	na	6.1E-02	1	;		2.2E_04	1	1		, a	ı	ì	<u> </u>	8.5E-U3
DDT °	0	1.15+00	1.0E-03	ā	2.2E-03	6.6E+00 6.	6.3E-03	na		2.8E-01	2.5E-04		2.2E-04	1 7F±00	1 E I			1 7 11.00	1 10	e i	6.1E-03
Demeton	0	ļ	1.0E-01	e	1		6.3E-01				2 5 5 0 2		1	5	50 60	<u>a</u>			1.6E-03	E E	6.1E-03
Diazinon	C	1 7E-01	1 7E-01			000	1 1 1				20-02	<u>u</u>	١ .	1		œ.	ı		1.6E-01	na	ı
Dibanz(a h)anthracene C		2	- - - -	<u> </u>	1 !		201	e .		4.3E-02 4	4.3E-02	e E	1	2.6E-01	2.7E-01	па	:	2.6E-01	2.7E-01	Па	ı
Diberz(a,r)animacene	9		ŀ.	Б	1.8E-01		ı	na £	5.0E+00	ı	ı	Bu	1.8E-02	:	1	ā	5.0E-01	:	1	na	5.0E-01.
1,2-Dichlorobenzene	0	ı		Па	1.3E+03		1	na 1	1.2E+04	ı	1	na F	1.3E+02	1	ı	na	1.2E+03	ı	. 1	na	1.2E+03
1,3-Dichlorobenzene	0	1	ı	na	9.6E+02	ı	1	na 6	9.1E+03	ı	ı	Bu	9.6E+01	ı	ı	na	9.1E+02		;	ВП	9.1E+02
1,4-Dichlorobenzene	0	ı	1.	na	1.9E+02	ì		na 1	1.8E+03	ı	ı	na	1.9E+01	1	1	na	1.8E+02	ı	1		1 8E±02
3,3-Dichlorobenzidine ^C	O	1	. 1	Б	2.8E-01	ı	ı	na 7	7.7E+00	ı	1	na	2.8E-02	;	1	2	7 7E-01		1		777.02
Dichlorobromomethane ^c	0	ı	ı	БП	1.7E+02	ı	:	na 4	4.7E+03	ı	1	na ,	1.7E+01	ı	. 1	<u> </u>	4.7E±02	1 :	:	<u> </u>	10-17
1,2-Dichloroethane ^c	0	ı	1	na	3.7E+02	ı	1	na 1	1.0E+04	I.		e	3.7F+01	,	1	1 0	20.10.	l	ı	<u> </u>	4.75+02
1,1-Dichloroethylene	0	1	'n	Па	7.1E+03	ı	ı	na	6.7E+04	1			7.15.402			<u> </u>	50-10-6	ł		ē	1.05+03
1.2-trans-dichloroethylene	0	1			10 H	1			1000	ı	ŀ	ם י	70-10-	ı	ı		6.75+03	:	1	B	6.7E+03
2 4-Dichlorophenol) С			<u> </u>	1 0	I		, (40.0	ı		e E	7.0F+03	:	ı	na	9.5E+03	:	1.	na	9.5E+03
2.4-Dichlorophenoxy)	ı. I	ı	E E	7.9E+02	ı	;	na	2.7E+03	ı	:	na	2.9E+01	ı	1	ā	2.7E+02	:	1	na	2.7E+02
acetic acid (2,4-D)	0	ı	ı	e B	1	1	,	na	- 1	ı	1	a	ı	1	ı	БП	1	;	:	na	
1,2-Dichloropropane ^C	0	1	1	na.	1.5E+02	ł	ı	na 4	4.1E+03	1		na	1.5E+01	1	1	ā	4.1E+02	. 1	,		4 15+02
1,3-Dichloropropene ^c	0	ı	1	па	2.1E+02	ı	ı	na. 5	5.8E+03	ı	ı	na	2.1E+01	1	ı		5.8E+02	,	,		5 8F±02
Dieldrin ^c	0	2.4E-01	5.6E-02	БП	5.4E-04	1.5E+00 3.	3.5E-01	na .	1.5E-02 6	6.0E-02	1.4E-02	na	5.4E-05	3.6E-01	8.8E-02			ź	8.8E-02	: e	1.5F-03
Diethyl Phthalate	0	1	ı	Б	4.4E+04	1	1	na 4	4.2E+05	ı	ı	na En	4.4E+03	ı	1	ā			;	E E	4.2E+04
2,4-Dimethylphenol	O		1	na B	8.5E+02	ı	1	na	8.1E+03	ı	1	na S	8.5E+01	ŀ	1	В	8.1E+02	ı	ı	_ E	8.1E+02
Dimethyl Phthalate	o	ı	ı	na	1.1E+06	ı	1	na 1	1.0E+07		ı	na	1.1E+05	t	ı	БП	1.0E+06	i	;	: E	1.0E+06
Di-n-Butyl Phthalate	0	ı	1	na	4.5E+03	1	ı	na 4	4.3E+04	1	,	na r	4.5E+02	ı	ŀ	na	4.3E+03	;	ı	E	4.3E+03
2,4 Dinitrophenol	0	i	ı	na	5.3E+03	ı	1	na 5	5.0E+04	ı	ı	BI	5.3E+02	ı	ı	na	5.0E+03	ı	1	na	5.0E+03
2-Methyl-4,6-Dinitrophenol	0	ı	ı	na	2.8E+02	1	ı	na 2	2.7E+03	ı	ı	BI	2.8E+01	ı	ı	a	2.7E+02	:	;	Eu	2.7E+02
2,4-Dinitrotoluene	0	ı	ı	na	3.4E+01	ı	ı	na	9.4E+02	ı	ı	na	3.4E+00	ı	ı	na	9.4 E +01	;	1	Па	9.4E+01
tetrachlorodibenzo-p-dioxin	0	1	1	БП	5.1E-08	ı	ı	na.	4.8E-07	ı	. 1	ē	5.1E-09	,	۱. ا	ā	м П П	1		ć	10
1,2-Diphenylhydrazine ^C	0	ı	ı	na	2.0E+00	ı	ı	na 5	5.5E+01	1	.!	e E	2.0E-01	1	ı		5.58+00			g (4.00-100
Alpha-Endosulfan	0	2.2E-01	5.6E-02	па	8.9E+01	1.3E+00 3.	3.5E-01	na 8	8.4E+02 5	5.5E-02	1.4E-02	e	8 9F+00	3.38-04	20.TR 8			5	L	1	2 1
Beta-Endosulfan	0	2.2E-01	5.6E-02	na	8.9E+01	1.3E+00 3.	3.5E-01	na 8			1.4E-02	i e	8.9E+00	3.3E-01	8 8F-02		-		0.0E-UZ	<u> </u>	8.45+07
Alpha + Beta Endosulfan	0	2.2E-01	5.6E-02	ı	1		3.5E-01	ı			1.4F-02	! !	3	о с п п	10.0				20-0c.0	<u> </u>	8.45+01
Endosulfan Sulfate	0	1	ı	na	8.9E+01		1	na 8	8.4E+02		!	e	00+H9	- - - - -	0.01-02	۱ 2	1 1 2	5	0.0E-UZ	: ;	; į
Endrin	0	8.6E-02	3.6E-02	па	6.0E-02	5.2E-01 2.	2.3E-01	na		8	9.0E-03		6.0E-03	1.3E-01	5.6F-02			1 3E_04		E 1	8.4E+U1
Endrin Aldehyde	0	1	,	na	3.0E-01	:	ı	na 2			. 1		3.0E-02		; ; ;				70-10-0	<u> </u>	3.7 1.02
																	2.01		:	2	4.0E-UI

4
₽
ო
oade
_

Parameter	Background		Water Quality Criteria	Criteria		Wast	Wasteload Allocations	ions	-	Antidegrada	Antidegradation Baseline		Ant	Antidegradation Allocations	Vilocations		N N	Most I imiting Allocations	Hocatione	
(ng/l unless noted)	Conc.	Acute	Chronic HH (PWS)	4 (PWS)	壬	Acute Chro	Chronic HH (PV	(PWS) HH	Acute	Chronic	HH (PWS)	壬	Acute	Chronic HH (PWS)	I (PWS)	Ŧ	Acute CI	Chronic HH	HH (PWS)	王
Ethylbenzene	0,	1	1	na	2.1E+03		- na	2.0E+04	J4	,	na	2.1E+02			4	8	1		4	2.0E+03
Fluoranthene	0	1	t	Па	1.4E+02	ı	- na	1.3E+03		ı	пa	1.4E+01	ı	ı		1.3E+02	1	1	ra Eu	1.3E+02
Fluorene	O	1	ı	na	5.3E+03	1	na na	5.0E+04	1	1	ē	5.3E+02	1	ı	na 5.	5.0E+03	ı	;	na	5.0E+03
Foaming Agents	0	ı	ı	na	ı	1.	· na	1	ı	ı	Bu	1	ı	1	na	ı	1	1	na	:
Guthion	O	1	1.0E-02	па			:-02 na	1	1	2.5E-03	Б	1	ı	1.6E-02	na	ı	-	1.6E-02	Па	
Heptachlor C	0	5.2E-01	3.8E-03	na		3.1E+00 2.4E-02	:-02 na	2.2E-02		1 9.5E-04	ā	7.9E-05	7.9E-01	5.9E-03	na 2	2.2E-03 7.	7.9E-01 5.	5.9E-03	na	2.2E-03
Heptachlor Epoxide	0	5.2E-01	3.8E-03	na	3.9E-04	3.1E+00 2.4E-02	:-02 na	1.15-02	1.3E-01	1 9.5E-04	ā	3.9E-05	7.9E-01	5.9E-03	na 1	1.1E-03 7.		5.9E-03	na	1.1E-03
Hexachlorobenzene	0	1	ļ	na	2.9E-03	1	- na	8.0E-02		ı	na	2.9E-04	ı	ı	na 8	8.0E-03		1	па	8.0E-03
Hexachlorobutadiene	0	ı	ı	<u>а</u>	1.8E+02	1	- na	5.05+03	- 83	ı	e.	1.8E+01	ı	ı	na 5.	5.0E+02	ı	;	na	5.0E+02
Aipha-BHC ^c	0	ŀ	ı	. 55	4.9E-02	. 1		1.3E+00	- 00	ı	e	4 9F-03	1	ı	o c	, ,				
Hexachlorocyclohexane											!	3		I			:	ı	E .	1.3E-01
Beta-BHC Hexachlorocyclohexane	0	ı	ı	па	1.7 E- 01	i	- na	4.7E+00	9	ı	na	1.7E-02	i	1	na 4	4.7E-01	ı	ı	na	4.7E-01
Gamma-BHC ^c (Lindane)	0	9.5E-01	EU	na B	1.8E+00	5.7E+00	Па	5.0E+01	01 2.4E-01	-	Б	1.8E-01	1.4E+00	ı	5	5 0F+00 1.	1 4E+00	:	ç	00+110
Hexachlorocyclopentadiene	0	ı	1	na	1.1E+03	ŀ	na	1.0E+04		1	B	1.1E+02						: :	<u>=</u>	3.0E+00
Hexachloroethane ^C	0	ı	ı	n a	3.3€+01	1	na en	9.1E+02	- 02	ı	g	3.3E+00	١	ı	. 0	0 1 11 50	ı		a .	55 5
Hydrogen Sulfide	0	1	2.0E+00	Б	1	- 1.3E+01	+01 na	1		5.0E-01	. 80		I	3 1F+00	· ·			3 1E 100	g (. 1044
Indeno (1,2,3-cd) pyrene ^c	0	ŧ	ŀ	na	1.8E-01	1	, na	5.0E+00	8	ı	п	1.8E-02	ı	;	. E	5.0E-01	,		<u> </u>	
lron	0	;	ı	g	1	!	na na	1	-	ı	g		ı	1				;	ā (0.0
Isophorone ^c	0	1	1	БП	9.6E+03	1	- na	2.6E+05	. 1	ı	ē	9.6E+02	ı	,	2 2	2 6F±04	l	:	Ē (: 100 100 100 100 100 100 100 100 100 100
Kepone	0	ı	0.0E+00	Б	ı	- 0.0E+00	+00 na	ı	ı	0.0E+00	БП		ı	0.00+00				10 OE+00	= E	*.ori
Lead	0	2.6E+02	2.9E+01	na	;	1.6E+03 1.8E+02	+02 na	1	6.4E+01		E	!	3.9F+02	4.5F±01	! <u>e</u>	,	3 05103	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 5	
Malathion	O	:	1.0E-01	ā	ı	- 6.3E-01	-01 na	;	1		БП	1	1	1.6E-01		1		1 8E-04	g 6	:
Manganese	0	1	ı	na	ı	1	na	1		ı	e		ı	;	! 5		-	-	g (:
Mercury	0	1.4E+00	7.7E-01	1	;	8.5E+00 4.8E+00	00+	;	3.5E-01	9.	! ;	1	2.1E+00	1.2E+00	<u> </u>	1 !	Ę	1.25+00	E I	1,
Methyl Bromide	0	ı	ı	na	1.5E+03	,		1.4E+04	- 40	1	na	1.5E+02	,		e	1 4F+03				: 1
Methylene Chloride ^C	0	. 1	ı	па	5.9E+03	ı	na Br	1.6E+05		ı	na	5.9E+02	I	. 1		1. FF+04			<u> </u>	1.467403
Methoxychlor	0	ı	3.0E-02	na	t	- 1.9E-01	:-01	I		7.5E-03	g	ı	ı	4.7E-02	: 2	. I		4.7E.02	ā :	1.01 1.01
Mirex	0	1	0.0E+00	па	ı	- 0.0E	0.0E+00 na	ı	ı ·	0.00+00	i e	;	i	0.0F+00	<u> </u>	1 1	ŧ .	4.7 = -0.2	E 1	ı
Nickel	0	3.0E+02	3.4E+01	па	4.6E+03	1.8E+03 2.1E+02	+02 na	4.4E+04	04 7.6E+01		e	4.6E+02	4.6F+02	5.38+04			Ş	20.1	E (: [
Nitrate (as N)	0,	1	ı	g	ı	ı	Ba	: I			Па	,	! '	; i +				10-11	E 6	4.4E+U3
Nitrobenzene	0	ı	ı	ā	6.9E+02	1	El	6.5E+03	ا ق	ı	na	6.9E+01	1	ı		6 5E+02	: 1		g (; ;
N-Nitrosodimethylamine ^c	0	ı	1	<u>Б</u>	3.0E+01		na na	8.3E+02	- 20	ı	g	3.0E+00	ı	ı	. ec	8.3E+01		: :	g 6	0.0E+04
N-Nitrosodiphenylamine ^c	0	ı	1	na	6.0E+01	1	- na	1.7E+03)3 80	ı	na	6.0E+00		1	E .	1.7E+02	,	,		1 7E+03
N-Nitrosodi-n-propylamine ^c	0	i	ı	na	5.1E+00	ı	- na	1.4E+02	02	1	Па	5.1E-01	ı	1	na 1	1.4E+01			1 6	1.4F±01
Nonylphenol	0	2.8E+01	6.6E+00	ı		1.7E+02 4.1E+01	+01 na	1	7.0E+00	0 1.7E+00	ı		4.2E+01	1.0E+01			4.2E+01 1.	1.0E+01	: E	
Parathion	0	6.5E-02	1.3E-02	па	-1	3.9E-01 8.1E-02	:-02 na		1.6E-02	2 3.3E-03	na	!	9.8E-02	2.0E-02	ВП	 		2.0E-02		;
PCB Total	O	1	1.4E-02	Б	6.4E-04	- 8.8E-02	:-02 na	1.8E-02	- 20	3.5E-03	na	6.4E-05	. 1	2.2E-02	na 1	1.8E-03		2.2E-02	. e	1.8F-03
Pentachlorophenol	0	1.6E+01	1.2E+01	na	3.0E+01	9.5E+01 7.5E+01	:+01 na	8.3E+02	02 3.9E+00	3.0E+00	na	3.0E+00	2.4E+01	1.9E+01	na 8.		2.4E+01 1.	1.9E+01	na	8.3E+01
Phenol	0	ı	i	ВП	8.6E+05	1	- na	8.1E+06	90		Па	8.6E+04	ı	1	na 8.					8.15+05
Pyrene	0	1	1	na	4.0E+03	1	na	3.8E+04	1	1	na	4.0E+02	1	t	na 3.	3.8E+03	;	:	na	3.8E+03
Radionuclides Gross Alpha Activity	0	1	ı	na	,		na	I	1	•	e u	1	ı	1	na	ı	ı		ā	. 1
(pCi/L)	0	ı	. 1	na	1	1	e .		,	1	g		1		į.					
Beta and Photon Activity (mrem/vr)	C			ļ				!			<u>.</u>		ı	i	e E	1	ŀ		па	
Radium 226 + 228 (pCi/L)	o c	, ,		E 6	4.0E+00	1	EL :	3.85+01		t	E E	4.0E-01	;	1	na 3.	3.8E+00	:	:	na	3.8E+00
Uranium (ug/l)) (ğ 0	ı	: :	e l	۱.	1	i	ē	ı	i	1	ВП	1	:	ı	na	ı
	,			<u>a</u>	-	•	- La	1	1	1	пa	1	ı	ı	na	1	1	ŀ	na	

4	
ō	
е 4	
ağ	
Ö.	

Parameter	Background		Water Quality Criteria	ity Criteria			Wasteload	Wasteload Allocations		¥	Antidegradation Baseline	on Baseline		Ant	Antidegradation Allocations	Allocations		M	lost Limiting	Most Limiting Allocations	
(ug/l unless noted)	Conc.	Acute	Chronic HH (PWS)	HH (PWS	HH	Acute	Chronic	Chronic HH (PWS)	Ŧ	Acute	Chronic HH (PWS)	HH (PWS)	<u></u>	Acute	Chronic	HH (PWS)	壬	Acute (Chronic	HH (PWS)	표
Selenium, Total Recoverable	0	2.0E+01	5:0E+00	na	4.2E+03	1.2E+02	3.1E+01	na	4.0E+04	5.0E+00	1.3E+00	na	4.2E+02	3.05+01	7.8E+00	na n	4.0E+03	3.0E+01	7.8E+00	na	4.0E+03
Silver	0	9.8E+00	1	na	1	5.9E+01	ı	na	,	2.4E+00	ı	na	1	1.5E+01	ı	Па	1	1.5E+01	;	na	J
Sulfate	6	ı	ı	na	1	1	1	Б	ı	ı	I	BC	,	ı	ı	na	ı	,	·	Ba	:
1,1,2,2-Tetrachloroethane ^c	0	1	ı	a	4.0E+01	1	1	na	1.1E+03	1	ı	па	4.0E+00	ı	ı	ā	1.1E+02	ı	;	e C	1.1E+02
Tetrachioroethylene ^c	0		ı	na	3.3E+01	ı	I	na	9.1E+02	1	1	na	3.3E+00	ı	I	ВП	9.1E+01	,	;	na	9.1E+01
Thallium	0	ı	1	na	4.7E-01	1	ı	па	4.5E+00		ł	Ba	4.7E-02	ı	ı	e e	4.5E-01	,	ŀ	na	4.5E-01
Toluene	0	ı	I	ā	6.0E+03	1	ŀ	g	5.7E+04	1	ı	na	6.0E+02	ı	ı	na	5.7E+03	ı	;	na	5.7E+03
Total dissolved solids	0	ı	ı	пa	1	1	ı	na	ı	ı	I	na	1	1	ı	па	ı	,	ı	БП	ı
Toxaphene ^c	0	7.3E-01	2.0E-04	e B	2.8E-03	4.4E+00	1.3E-03	ឆ្ន	7.7E-02	1.8E-01	5.0E-05	ß	2.8E-04	1.1E+00	3.1E-04	па	7.7E-03	1.1E+00	3.1E-04	na	7.7E-03
Tributyltin	Ö	4.6E-01	7.2E-02	na	ı	2.8E+00	4.5E-01	na	ŀ	1.2E-01	1.8E-02	ВП	ı	6.9E-01	1.1E-01	na	1	6.9E-01	1.1E-01	na	:
1,2,4-Trichlorobenzene	0	1	ı	па	7.0E+01	1	1	ВП	6.6E+02	ı	ı	ВП	7.0E+00		ı	ā	6.6E+01	;	:	en.	6.6E+01
1,1,2-Trichloroethane ^C	0	ı	ı	ם	1.6E+02	1	1.	ā	4.4E+03	ı	ı	E C	1.6E+01	ı	ı	e e	4.4E+02	:	i	: E	4.4F+02
Trichloroethylene ^C	0	1	ı	па	3.0E+02	ı	. 1	ВП	8.3E+03	1	ı	па	3.0E+01	t	ı		8.3E+02		:	. E	8.3E+02
2,4,6-Trichlorophenol	0		ı	na	2.4E+01	1	1	na	6.6E+02	ı	ı	Па	2.4E+00	ı	ı	па	6.6E+01	;	:	: E	6.6E+01
2-(2,4,5-Trichlorophenoxy) propionic acid (Silvex)	0	1	ı	ē	ı	ı	1	па	ı	1	ı	na	1	I	1		1	t	:	! 22	1
Vinyi Chloride ^C	0	ı	1	na	2.4E+01	Ì	ı	ā	6.6E+02	٠,	ı	na	2.4E+00	1		na	6.6E+01	;	ı	na	6.6E+01
Zinc	0	2.0E+02	2.0E+02	na	2.6E+04	1.2E+03	1.2E+03	na	2.5E+05	4.9E+01	4.9E+01	па	2.6E+03	3.0E+02	3.1E+02	na	2.5E+04	3.0E+02	3.1E+02	ē	2.5E+04

Notes:

- All concentrations expressed as micrograms/liter (ug/l), unless noted otherwise
- 2. Discharge flow is highest monthly average or Form 2C maximum for Industries and design flow for Municipals
 - 3. Metals measured as Dissolved, unless specified otherwise
 - 4. "C" indicates a carcinogenic parameter
- Regular WLAs are mass balances (minus background concentration) using the % of stream flow entered above under Mixing Information. Antidegradation WLAs are based upon a complete mix.
- 6. Antideg. Baseline = (0.25(WQC background conc.) + background conc.) for acute and chronic
 - = (0.1(WQC background conc.) + background conc.) for human health
- 7. WLAs established at the following stream flows: 1Q10 for Acute, 30Q10 for Chronic Ammonia, 7Q10 for Other Chronic, 30Q5 for Non-carcinogens and

Harmonic Mean for Carcinogens. To apply mixing ratios from a model set the stream flow equal to (mixing ratio - 1), effluent flow equal to 1 and 100% mix.

Metai	Target Value (SSTV)	Note: do not use QL's lower than the
Antimony	6.1E+02	minimum QL's provided in agency
Arsenic	1.4E+02	guidance
Barium	na	
Cadmium	1.7E+00	
Chromium III	1.1E+02	
Chromium VI	9.7E+00	
Copper	1.4E+01	
lron	na	
Lead	2.7E+01	
Manganese	na	
Mercury	7.2E-01	
Nickel	3.2E+01	
Selenium	4.7E+00	
Silver	5.9E+00	
Zinc	1.2E+02	

STATS.exe Evaluation of single Total Nickel Value

Facility	Steel Dynamics		Expected Value Variance	3.1 3.4596
Chemical	Nickel total WU	S limit evaluation	C.V. 97th percentile - Daily	0.6 7.54359
ls Ammonia	being Analyzed?	C Yes	97th percentile: 4 day 97th percentile 30 day	5.15774 3.73876
WLAa	460	100000000000000000000000000000000000000	# < Q.L.	0
WLAc	53			
Q.L. # samples/n	1			
# samples/v		200 A	Model used BPJ As	sumptions, type 2 data
	L.	And the second s	Limit needed? NO	
Enter Data		Type data :	Limit needed? NU	
# items	1 .	Press Enter	Basis for limits N/A	
	L		20 (20 (20 (20 (20 (20 (20 (20 (20 (20 (
	3.1		Maximum Daily Limit N	/A
Data List		40.096 (4.00 st. 22)	Weekly Average Limit N	/A
		100 miles 100 mi	Monthly Average Limit N	/A
To remove a datum: double click on it			Note: The Average weekly limit ap The Daily Maximum limit app The Monthly average limit a	ilies to industrial facilities
		Calculate Statistics		RESET

VPDES Permit VA0001589 Steel Dynamics, Roanoke Bar Division Reissuance 2011

ATTACHMENT D

- 1. Storm water DMR effluent data submitted during the 2005 permit term for outfalls 001, 002 and 003
- 2. Storm water application testing data for outfalls 001, 002 and 003
- 3. WET data summary memo for outfall 001

VPDES Permit VA0001589 Steel Dynamics, Roanoke Bar Division Reissuance 2011

DMR Data Summary Steel Dynamics Roanoke Bar Division

VA0001589

O.	ıtfall	No	:001
v	Juai	110	

	<u>Due Date</u>	10-Jul-2006	10-Jan-2008	10-Jan-2009	10-Jan-2010	Screening
Parameter Description						<u>Criteria</u>
Flow, Precipitation event (estimat	e) .	0.01	0.015	0.16	1.32	na
Total Suspended Solids (mg/L)		113	126	90	49.5	100
Aluminum, total recoverable		1360	1980	1400	740	750
TUa - Acute 48-hr static C. Dubia		7.5	19.9	3.4	4.9	1

Outfall No:002

Due Dat	te 10-Jul-2006	10-Jan-2008	10-Jan-2009	10-Jan-2010	Screening
Parameter Description					<u>Criteria</u>
Flow, Precipitation event (estimate)	0.002	0.002	0.1	0.85	a sa ka a a na a
pH (s.u.)	9.82	8.31	8.73	8.46	6.0 - 9.0
Aluminum, total recoverable (ug/L)	516	546	823	920	750
Zinc, total recoverable (ug/L)	546	186	417	330	120
Copper, dissolved (ug/L as CU)	42	22	8	7.9	60

Outfall No:003

<u>Due Date</u>	10-Jul-2006	10-Jan-2008	10-Jan-2009	10-Jan-2010	Screening
Parameter Description		•			<u>Criteria</u>
Flow, Precipitation event (estimate)	0.002	0.0009	0.04	0.31	na
Aluminum, total recoverable (ug/L)	290	752	2320	780	750

EPA Application 2F Data Summary Steel Dynamics Roanoke Bar Division

VA0001589

Storm 24 April 2010, 0.43 inches 225 minutes duration (3.75 hours) > 72 hours since last measurable event

		0	Outfall number	Į.			
	001	005	003	900	200	Screening	
Parameter Description (mg/l unless noted)						Criteria	
Flow, Precipitation event (estimate) (gal)	150,848	151,840	35,727	38,704	320,224	E C	
Oil & Grease	pu	pu	pu	. Pu	ב	5	
Biological Oxygen Demand, 5-day (BOD5)	2	2	2	Б	7	30	
Chemical Oxygen Demand, 5-day (COD)	35	32	73	41	21	120	
Total Suspended Solids (TSS)	53	16	4	27	115	100	
Total Organic Nitrogen	^ 1.0	2.3	1.78	рц	ם	2.2	criteria is for total nitrogen
Total Phosphorus	0.24	0.3	0.27	0.32	0.47	2	
pH (standard units)	8.75	7.64	8.44	9.29	9.86	0.6 - 0.9	
Aluminum, total recoverable (ug/l)	740	920	249			750	
Copper, dissolved (ug/L)	21.5	7.9	10.9	10.9	pu	09	criteria is for dissolved values
Copper, total recoverable (ug/L)			19.2	10.3	24.6	09	criteria is for dissolved values
Zinc, total recoverable (ug/L)	637	330	115	50.9	80.9	120	
Chrome VI, dissolved	pu	pu	pu	pu	pu		

nd = not detected at the quanitifiction level

No discharge from outfall 008 due to stormwater detention basin

MEMORANDUM

DEPARTMENT OF ENVIRONMENTAL QUALITY Blue Ridge Regional Office - Roanoke Water Division

3019 Peters Creek Road

Roanoke, VA 24019

Subject: WET Testing; Acute - C. dubia Annual; Outfall 001

Steel Dynamics Roanoke Bar Division dba Roanoke Electric Steel, Roanoke

VPDES permit VA0001589

To: Fact Sheet 2010 VPDES Permit Reissuance

From: Susan K. Edwards, Environmental Engineer Senior

Date: April 2010

Discussion:

Acute WET testing is performed on storm water samples from outfall 001 on an annual basis to assist in monitoring the effectiveness of the facility's Storm Water Pollution Prevention Plan (SWPPP). The 2005 VPDES Permit reissuance reduced bioassay testing to only C. dubia (fathead minnows) as the previous testing showed no toxicity in the P. promelas (water fleas).

The results of the annual acute WET tests are shown on the summary table below. Grab samples of stormwater discharges from outfall 001 were collected for toxicity testing. Each data package and report was audited. Each submittal was determined to be valid based on the appropriate review checklist. Effluent Stormwater Discharge Date Record was included in each report. The form provides documentation that the stormwater events sampled meet the requirements of the VPDES permit special condition.

The test indicates that the effluent samples are acutely toxic for *C. dubia*. The LC₅₀ for C. dubia are consistently very poor. The permittee, Steel Dynamics, has worked to improve house keeping measures as part of the stormwater Pollution Prevention Plan's Best Management Practices. They believe that the new air pollution control baghouse will greatly improve the stormwater quality by reducing the particulate deposition of materials in this area from the plant's arc furnaces.

The new air pollution baghouse is located in new stormwater outfall areas of the property with new stormwater quality management measures.

Recommendations:

The cumulative results of acute toxicity tests indicate that the stormwater from outfall 001 is acutely toxic to *Ceriodaphnia*. As stated during the permit term it is recommended that further consideration be given to installing additional "Advanced Best Management Practices" (as worded in the SWPPPP) on this outfall. Determine the cause and mitigate the high pH readings in the stormwater. Evaluate the need to install structural measures to improve stormwater quality from this.

Continued sampling, testing and reporting of WET in accordance with the Toxicity Management Program. The next acute 001 bioassay should be before Dec. 31, 2010 with results submittal by Jan. 10, 2011.

Acute Toxicity Test Results - outfall 001

Test Date	Test Organism	48-hour LC ₅₀	TUa	% Survival in 100% Effluent
06/06	C. dubia	13.4	7.5	0
07/07	C. dubia	5.03	19.9	0
05/08	C. dubia	29.4	3.4	20
12/09	<u>C. dubia</u>	20.4	4.9	0

VPDES Permit VA0001589 Steel Dynamics, Roanoke Bar Division Reissuance 2011

ATTACHMENT E

1. NPDES Permit Rating Worksheet

VPDES Permit VA0001589 Steel Dynamics, Roanoke Bar Division Reissuance 2011

ATTACHMENT E

									gular Addit cretionaryA			
NPDES NO. <u>va00015</u>	89								re change,	but no stati	is change	
Facility Name: Steel Dynam	ics Roanok	e Bar Div	ision (a.k.	a. Roanoke	Electric	Steel)		LI Dele	CHOII			
City: Roanoke, Virginia												
Receiving Water: Peters Cre	ek, Roanok	ce River w	atershed				•					
Reach Number:												
				 .								
ls this facility a steam electri the following characteristi		ant (SIC=4	4911) with	one or mor	e of	Is this per greater th		municipal sej 00?	parate stor	m sewer se	rving a pop	ulation
1. Power output 500 MW or	greater (not	t using a c	ooling pon	ıd/lake)		☐ YES; s	score is 7	00 (stop here)				
2. A nuclear power plant		050/ 6.1			210	M NO (d	continue)					
 Cooling water discharge graph flow rate 	reater than	25% of th	e receiving	g stream's /C	510							
☐ YES; score is 600 (stop he	ere) 🗹 NO	(continue	:)									
			FACT	OR 1: T	oxic	Polluta	nt Pot	ential				
PCS SIC Code; 3312	Primary SI							ning 40 CFR 4	20, Subpar	ts (D no dis	charge), F &	G)
Other SIC Codes:												
ndustrial Subcategory Code:	007 & 002	3_ (Code	000 if no s	subcategory)							
Determine the Toxicity poten	tial from A _l	ppendix A.	Be sure t	to use the TO	OTAL to	xicity pote	ntial colı	mn and check	k one)			
Toxicity Group Co	de Points	3	To	xicity Group)	Code	Points		Toxicity	Group	Code	Points
☐ No process 0 waste streams	0			☑ 3.		3	15		☑ 7.		7	35
□ 1.	5 10			□ 4. □ 5.		4 5	20 25		□ 8. □ 9.		8 9	40 45
J 2. 2	10			⊒ 6.		6	30		☐ 10.		10	50
						•			(Code Numb	er Checked	: 3 & 7
							,			Total Po	ints Factor	r 1: <u>35</u>
FACTOR 2: Flow/Strea	m Flow	Volume	(Complete	either Sectio	on A or S	Section R: 0	heck only	one)		•		_
Section A Wastewater Fl				onner Boome				r and Stream	Flow Con	sidered		
	ow only c		Points					ent of instrea			entration	
Wastewater Type See Instructions)		Code	romis			instruction		eceiving Stre			Citt ation	
Type I: Flow < 5 MGD		11	0		•		·	_				
Flow 5 to 10 MGD		12	10							Code	Points	
Flow > 10 to 50 MGI		13	20		т	T/TTT.	- 10		_	41		
Flow > 50 MGD		14	30		Type	I/III:	< 10	%	П	41	U	
Гуре II: Flow < 1 MGD		21	10				10 %	% to < 50 %		42	10	
Flow 1 to 5 MGD		22 .	20						_			
Flow > 5 to 10 MGD		23	30				> 50	%		43	20	
Flow > 10 MGD		24	50									
Type III: Flow < 1 MGD		31	0		Type	II:	< 10	% .		51	0	
Flow 1 to 5 MGD		32	10									
Flow > 5 to 10 MGD		33	20				10 %	to <50 %	\square	52	20	
Flow > 10 MGD		34	30				> 50	%		53	30	
							- 50	, U		33	30	
								Code Check	ked from S	Section A	or B: <u>52</u>	<u>.</u>
									Total Po	ints Fact	or 2: <u>20</u>	_

FACTOR 3: C (only when limited b			utants					NPDE	S NO: <u>V</u>	A0001589_
A. Oxygen Deman	ding Polluta	ınt: (checl	cone)	□BOD □ COD □	Other: NA					
Permit L	imits: (chec	ck one)		< 100 lbs/day 100 to 1000 lbs/day > 1000 to 3000 lbs/day > 3000 lbs/day	Code 1 2 3 4		Points 0 5 15 20	· Code C	hecked:	•
									cored: 0	
B. Total Suspended Permit L	l Solids (TS imits: (chec			< 100 lbs/day 100 to 1000 lbs/day > 1000 to 5000 lbs/day > 5000 lbs/day	Code 1 2 3 4		Points 0 5 · 15 20		hecked:	
C. Nitrogen Polluta	nt: (ahaak a	na)	□ Am	monia	IΔ			Points S	scored: <u>1</u>	15_
Ü	imits: (chec	•		Nitrogen Equivalent < 300 lbs/day 300 to 1000 lbs/day > 1000 to 3000 lbs/day > 3000 lbs/day	Code 1 2		Points 0 5 15 20		necked: cored:0 actor 3: _ <u>15</u>	
				FACTOR 4: Pu	ıblic Healt	h Impaci	.			
Is there a public di receiving water is water from the abo	a tributary)? A pub	lic drink	l within 50 miles downstre ing water supply may inc	eam of the efflu lude infiltratio	ent discharg n galleries, c	e (this incl or other me	udes any body of thods of conveya	water to w	vhich the Itimately ge
☐ YES (If yes, che	eck toxicity	y potentia	l numbe	r below)						
☑ NO (If no, go to	Factor 5)									
Determine the hun the <u>human health</u> t	<i>an health</i> oxicity gro	toxicity poup colum	otential in? che	from Appendix A. Use the ck one below)	ne same SIC co	de and subc	ategory ref	erence as in Facto	or 1. (Be s	sure to use
Toxicity Group	Code	Points	o	Toxicity Group	Code	Points		Toxicity Group	Code	Points
☐ No process waste streams	0	0		□ 3.	3	0 .		□ 7.	7	15
□ 1.	1	0		□ 4.	4	0		□ 8.	8	20
□ 2.	2	0		□ 5.	, 5	- 5		□ 9.	9	. 25
•				□ 6.	6	10		□ 10.	10	30
								Code Number Ch	ecked:	

Total Points Factor 4: 0

FACTOR:	5: N	Water	Quality	Factors
---------	------	-------	---------	----------------

NPDES NO: VA0001589_

<i>A</i> .	Is (or will) one o effluent guideline	r more of the s, or techno	e effluent discharge limits logy-based state effluent g	based on water uidelines), or ho	quality factors of th as a wasteload allo	he receiving strean cation been assign	n (rather than technology ned to the discharge:	-based federal
	· □		Code 1 2	Poi 10 0	nts			
В.	Is the receiving w	ater in com	pliance with applicable we	ater quality stan	dards for pollutant.	s that are water qı	uality limited in the permi	it?
	 ☑		Code 1 2	Poi 0 5	nts			
C.	Does the effluent	discharged	from this facility exhibit th	e reasonable po	tential to violate w	ater quality stando	ards due to whole effluen	t toxicity?
			Code 1 2	Poi 10 0	nts			
						Code	Number Checked: A 1	B <u>1</u> C <u>1</u>
	•	•			Poi	ints Factor 5: A	<u>10</u> + B <u>0</u> + C <u>10</u>	= <u>20</u> TOTAL
			FACTOR 6:	Proximit	y to Near Co	astal Waters		en e
Α.	Base Score: Ente	r flow code	here (from Factor 2): <u>NA</u>		Enter the multi	plication factor the	at corresponds to the flov	v code: <u>-</u>
	Check appropriat	e facility HF	PRI Code (from PCS):			•		
	HPRI#	Code	HPRI Score		Flow Code		Multiplication Factor	
	□ 1 □ 2 □ 3 □ 4 □ 5	1 2 3 4 5	20 0 30 0 20		11, 31, or 41 12, 32, or 42 13, 33, or 43 14 or 34 21 or 51 22 or 52		0.00 0.05 0.10 0.15 0.10 0.30	
٠	HPRI code check	ed:			23 or 53 24		0.60 1.00	
	Base Score: (HPF	I Score)	X (Multiplication Fact	or) =0	_ (TOTAL POIN	TS)		
	discharge to one	t has an HF of the estua on (NEP) pro	Program PRI code of 3, does the faci ries enrolled in the Nation ogram (see instructions) o	lity al	any of the polluta	has an HPRI code	e of 5, does the facility dis o one of the Great Lakes'	
	Cod □ Yes 1 □ No 2	e Points 10 0			Code □ Yes 1 □ No 2	Points 10 0		
	Code Number Ch	ecked:			A B	_ C_		
						Points Factor 6:	A_+B_+C_	= <u>0</u> TOTAL

SCORE	SUMMARY		NPDES NO: <u>VA0001589</u>
Facto	r Description	Total Points	
1	Toxic Pollutant Potential	<u>35</u>	
2	Flows/Streamflow Volume	_20	
3	Conventional Pollutants	_15	
4	Public Health Impacts	0	
5	Water Quality Factors	_20	
6	Proximity to Near Coastal Waters	0	
2	. TOTAL (Factors 1 through 6)	90	
S1. Is the	total score equal to or greater than 80? 🗹 Yes ((Facility is a major) \square No	
S2. If the	answer to the above questions is no, would you lil	ke this facility to be discretionary major?	
□ No			
☐ Yes	s (Add 500 points to the above score and provide	reason below:	
Reaso	on:		
NEW	SCORE:90		
	SCORE:		
OLD	DOORL	•	

Susan K. Edwards	
Permit Reviewer's Name	
(540) 562 6764	
(540) 562-6764 Phone Number	
April 22, 2010	
Date	